
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia

205

AN AGENT BASED APPROACH TO MODELING
THE SECURE ELECTRONIC TRANSACTION PROTOCOL

by

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos

Abstract: Secure Electronic Transaction (SET) is an open protocol, which has the potential to
emerge as a powerful tool in securing of electronic transactions. It is of primary importance to
produce formal specifications that describe precisely the functional and temporal properties of
the protocol leading to validation and verification prior to committing to implementation. The
primary objective of this work is the construction of an agent based model for the operation of
the SET protocol. A theoretical framework for the agents is presented and an architectural
diagram based on them is constructed. Finally, formal specifications for every agent
participating in the model are developed.

1. INTRODUCTION

 E-Commerce (Turban E., 2002) is a distributed environment where a number
of trading parties such as customers, merchants and service providers, collaborate
with the aid of information technologies to conduct business transactions. With the
dominance of Internet, electronic commerce moves over the Net and thus new
technological and communicational standards and specifications (Ouyang, C., 2002)
emerged to provide the required infrastructure. Secure Electronic Transaction is a
Protocol aims at providing an interoperable framework for secure electronic business
transactions between the participants of an E-Commerce environment, which have no
prior association between them. The major effort of the SET protocol is to secure the
payments in a consumer-to-business e-commerce environment.

It is of primary importance to develop a sound architectural model of the
Protocol to simplify the construction of complex e-commerce configurations on one
hand, and serve as a test bed for evaluating suggested new business strategies on the
other. Formal modeling and analysis of agent-based architectures promotes
understanding and reasoning and can result to models that describe precisely the
functional and temporal properties of the system leading to validation and verification
prior to undertaking any implementation effort.

The primary objective of this paper is the construction of an agent-based
model for the operation of the SET protocol. Initially a theoretical framework for the
agents is presented and an architectural diagram based on them is constructed. Finally,
state machine chart diagrams and formal specifications for every agent participating in
the model are developed and general concluding remarks are done.

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 206

2. AGENT BASED SYSTEMS

An E-commerce architecture is a software system which consists of three
types of distinct building blocks, agents, connectors and configurations. An agent is a
software component, which continuously runs, it exists as a semi-autonomous entity,
and performs various activities for the completion of a transaction.

An agent is an object with the following properties (Alagar, V.S., 2001):
• Αn agent is a software component made to achieve certain objectives.
• An agent can be either autonomous or can respond to stimuli which are other

agents.
• An agent has enough computational resources and knowledge in order to

complete the tasks assigned to it within certain time limits.
• An agent communicates with other agents in its environment with messages at

its ports, where a port is an access point for a bidirectional communication.
• Αn agent can change dynamically its behavior if its content is changed.

A connector is a channel of communication between two agents and is
described by the protocols of message exchanges through that connector (Allen, R.,
1999). A configuration defines the cooperation between a finite number of agents with
connectors along which they communicate. Each configuration models a role. An
agent can participate in various roles.

The global context for an e-commerce system is defined as the tuple of GC
(A, R, P) where:

• A is a finite set of agents, where each of theses agents has a finite set of port
types

• R=MUm, where M is a set of messages for communications between the
agents, m={create, dispatch, engage, disengage, dispose, silent} are control
messages and ΜUm = Ø

• P is a finite set of applications.
A port type defines a set of messages that can occur at a port of this type. Port

types are defined with the symbol @. An agent of the type A [L] ∈A, where L is the
list of the port types, can be created by initializing every port type in L with a finite
number of ports and by assigning these ports to the agent. For example A1[p1,p2 : @P ;
q1,q2,q3 : @Q] is an agent of the type A[@P,@Q]. Messages of a specific type can
only be sent or received by ports of the same type.
 All agents have modes. When a new agent is created its ports, id and
characteristics are initialized in mode “initial”. Initial mode is the result of the control
message creates. After its creation the agent is in sate wait in which it waits to act. An
agent can be in this state in its home or in a removed site. However it can be send to
another site through the message dispatch and then it is in state dispatched. When the
agent receives the message engage, agent’s mode changes from dispatched to remote-
run and it executes its remote task. When it finishes the task the agent goes to mode

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 207

pause. If there are no more tasks in that site the agent gets the message disengage and
goes to mode wait again. An agent in a remote site can be recalled using the message
recall. When it receives this message it turns its mode to retract. Then the message
engage changes the agent’s mode from retract to local-run, and when the agent
finishes its work it goes again to mode pause. When an agent, who is in mode wait,
receives the message dispose it changes its mode to dispose.

Structures for the specification of agent types and System Configuration are
the following:

Agent <identifier>[<port types>]
 Events:
 States:
 Attributes:
 Attribute-Function:
 Transition-Specification:
 Time-Constraints:
End

 Subsystem <identifier>
 Include:
 Instantiate:
 Configure:
 End

The field “Events” describes all the messages that exist it the system. Each

event is marked with a “!” or a “?” if it is for input or output accordingly. Field
“States” describes all the situations in which the agent can be found according to the
events it receives. The field “Transition-Specifications” describes all the states in
which the agent can occur. The field “Time-Constraints” defines the time bounds if
the agent is timed.

Each agent answers to every message it receives. The message is of the shape
<e, pi, t>, which means the message e occurs at time t at port pi. Two ports are
compatible if the set of input messages at one port is equal to the set of output
messages at the other. If the port p of agent Ai is connected to one of each compatible
port q of agent Aj then the composition relation Ai.@p ↔ Aj.@p is valid. When a
message is exchanged through the channel connecting two agents then the agents
change their statuses in the same time.

3. SET PROTOCOL OVERVIEW

Secure Electronic Transactions (SET) Protocol is based on the science of
cryptography and the art of encoding and decoding messages. It relies on two different
encryption mechanisms, as well as an authentication mechanism. SET uses symmetric
encryption, in the form of the Data Encryption Standard (DES), as well as asymmetric,
or public-key, encryption to transmit session keys for DES transactions (Visa, 1997).
Rather than offer the security and protection afforded by public-key cryptography,
SET simply uses session keys (56 bits), which are transmitted asymmetrically, and the
remainder of the transaction uses symmetric encryption in the form of DES. This has

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 208

disturbing effects to a "secure" electronic transaction protocol because public key
cryptography is only used to encrypt DES keys and for authentication, and not for the
encryption of the main body of the transaction. The computational cost of asymmetric
encryption is cited as the reason for using weak 56 bit DES (Visa, 1997).

The SET protocol has three principle features:
 1. All sensitive information sent between the three parties is encrypted.
 2. All three parties are required to authenticate themselves with certificates.
 3. The merchant never sees the customer's card number in plaintext.
This last feature actually makes commerce on Internet more secure than traditional
credit card transactions, such as credit card transactions over phone. Indeed, if you
were to order a sweater over the phone, you would leave your card number with the
merchant. Someone working for the merchant could then obtain your card number and
make purchases at your expense. But with the SET protocol, only the merchant's bank
gets to see the card number in plaintext.

Four different agents are the main constituents in SET protocol, around which the
whole philosophy of the protocol is built. These agents are Cardholder, Merchant,
Payment Gateway and Certificate Authority. The role that each one plays in the e-
commerce process is the following:

• Cardholder, who is an owner of a credit card issued by an Issuer Bank that
also provides support for e-commerce transactions.

• Merchant, who is the one that provides goods, services and information and
accepts to be paid using the SET protocol.

• Payment Gateway is a system, which offers e-commerce services to merchants
with the support of the Acquirer and acts as its representative to undertake the
capture and the approval of a transaction.

• Certificate Authority is an agency that represents one or more credit card
companies and is responsible for the supply and distribution of authentication
certificates towards the Cardholder, the Merchant and the Payment gateway.

In addition to Agents described above the following secondary Entities take part in the
process.

• Issuer is a finance organization, which supports the publication of credit cards.
• Acquirer is a finance organization that stakes merchants to accept credit cards

for their transactions.
• Finance Network of the credit card’s company is the network that is used by

the company to connect the Acquirer and the Issuer.
For the achievement of a transaction the following sequence of actions is

followed. The cardholder, using a computer, buys goods in the World Wide Web
(www) by choosing an object that is online in a catalogue. When the cardholder
decides to buy some goods, the operation of the protocol begins to ensure a secure
electronic transaction for the cardholder. The transaction of a purchase can take place
in many different ways, depending on the professional situation of the merchant and
the way the cardholder wants the transaction to be done. For example:

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 209

• The cardholder may want to pay in installments.
• The order may contain goods that should be sent by post or some product

that is not in material form, like a video clip, which can be sent by e-mail.
In Fig. 1 the agents in the protocol with their interconnections are presented

diagrammatically.

Cardholder

Payment
GatewayMerchant

Certification
Authority

Fig. 1. General Description of SET Protocol

From the general description of the system presented in Fig. 1, taking into

account the communication links, communication messages exchanged between the
agents, the types of all agents together with the types of ports for each one are
determined. For example, agent cardholder needs two types of ports, one for
communication with agent Certificate Authority and the other for communicating with
agent Merchant. Thus the general description of the system in Fig.1 by adding the
information of ports in each agent becomes detailed and more informative. The
improved model is the high-level architecture diagram of the system and is shown in
Fig. 2.

4. STATE MACHINE MODELS FOR THE AGENTS

 The functional and time behavior of an agent is modeled by a state machine
extended with ports, hierarchical states, and transitions governed by clocks and guards
(Chen, Q., 2000). The running behavior of the agent depends on the context, defined
by the set of messages that can be received or sent to other agents in a specific
application. Messages are either input or output events. Messages are received and
send at the ports. All ports of a specific type can receive or send only those messages
associated with that type. Every agent has a finite set of attributes. The static attributes
are the resources at its disposal, tables of information and rules for encoding
knowledge and functions to perform the tasks that it has to execute. The dynamic
attributes are those required for the agent’s interaction in different contexts.

In the sequel the state machines for the four agents of the SET protocol are
shown in Fig 3a, 3b, 3c, 3d presenting their behavior when their mode of operation is

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 210

either local-run or remote-run. In the state machine chart diagrams events that occur
and states are marked.

<<GRC>>
CARDHOLDER
from Cardholder

<<PortType>>
@L

from Cardholder

<<PortType>>
@B

from Merchant

<<PortType>>
@K

from Cardholder

<<PortType>>
@H

from CA

<<GRC>>
CA

from CA

<<GRC>>
MERCHANT

from Merchant

<<PortType>>
@D

from Merchant

<<PortType>>
@E

from Payment
Gateway

<<PortType>>
@A

from Merchant

<<PortType>>
@I

from CA

<<GRC>>
PAYMENT
GATEWAY

<<PortType>>
@G

from Payment
Gateway

<<PortType>>
@W

from CA

Fig. 2. High-Level Architecture Diagram

5. FORMAL SPECIFICATIONS OF THE AGENTS AND SYSTEM
CONFIGURATION

Formal modeling of an E-commerce architecture enables a rigorous analysis of the
high level architecture to prove that the desired properties of the specified business
scenarios and strategies are verified. Also generic architectures can be considered for
modeling and studying similar systems in a broader application domain. In the sequel
formal specifications for the System Configuration and for each of the four agents
according to formal notation and the operational semantics established to define types of
agents and system configurations as described in the 2nd chapter, are cited.

5.1 Formal Specifications for System Configuration

SET Ecommerce
Includes:
Instantiate:

Cl::Cardholder[@K:l, L@:1];
Ml::Merchant[@B:l, @A:1, @D:1];

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 211

Pl::PaymentGateway[@G:l, @E:1];
CAl::CertificateAuthority[@H:l,@I:1,@W:1];

Configure:
C1.@K1:@K< -- >CA1.@H1:@H;
C1.@L1:@L< -- >M1.@B1:@B;
M1.@A1:@A< -- >CA1.@I1:@I;
M1.@D1:@D< -- >P1.@E1:@E;
CA1.@W1:@W< -- >P1.@G1:@G;

End

idleValidateCertRes

ProcessPCertRes ProcessInqRes

ProcessRegFormRes
RegFormRes

CertRes

CertInqRes

ProcessPRes

CertReq

PRes

InqReqInqRes

PReq

PInitRes

ProcessInitResponse

CardCInitRes

RegFormReq

ValidateCertInqRes

CertInqRes

CardInitReq
PInitReq

Fig.3a. State Machine Chart Diagram for Cardholder

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 212

idle

ProcessPinitReq

ValidateCertReq

ProcessAuthRevRes

ProcessCredRes

ProcessPCertRes
ProcessBatchAdminRes

ProcessCapRevRes

ProcessAuthRes

ProcessPReq

ValidateCertInqRes

ProcessCInitRes

ProcessInqReq

BatchAdminRes

PCertRes

CredRes

InqReq

InqReq

InqResAuthRevRes

CredReq

CapRevRes

AuthRes

AuthRevRes

PReq

PRes

CertInqRes

CertReq

Me-AqCInitRes

CertInqReq

CertRes

PInitRes

PInitReq

CredRevReq
PCertReq

BatchAdminReq
CapRevReq

CapReq
Me-AqCInitReq

Fig. 3b. State Machine Chart for Merchant

idleProcessCInitReq

ProcessPCertRes ProcessCertReq

ProcessCardCIniReq
CardCInitReqMe-AqCInitReq

Me-AqCInitRes

ProcessRegFormReq

CardCInitRes

RegFormRes

RegFormReq
CertReq

CertRes

CertInqReq

CertInqRes

Fig. 3c. State Machine Chart diagram for Certificate authority

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 213

idle

ProcessPCertReq

ValidateCertInqReq

ProcessAuthRevRes

ProcessCapReq
ProcessAdminRes

ProcessCapRevRes

ProcessCredReq

ValidateCertRes

ProcessCInitRes

ProcessCredRevReq

ProcessAuthReq

AdminRes

CapReq

AuthRevRes
AuthRevReq

AuthResAuthReq

CapRevReq

CapRevRes

CredRes

CredReq

CertRes

CertInqReq

Me-AqCInitRes

CredRevRes

CredRevReq

CertInqReq

PCertRes

PCertReq

Me-AqCInitReq

CapRes

AdminReq

CertReq

Fig. 3d. State Machine Chart Diagram for Payment Gateway

5.2 Formal Specifications for the Cardholder

Agent Cardholder[@K, @B]
Events: CardCInitReq!@K, CardCInitRes?@K, RegFormReq!@K, RegFormRes?@K,
CertReq!@K, CertRes?@K, CertInqReq!@K, CertInqRes?@K, PInitReq!@L,
PInitRes?@L, PReq!@L, PRes?@L, InqReq!@L, InqRes?@L
States: *idle, ProcessInitResponse, ProcessRegFormRes, ValidateCertRes,
ValidateCertlnqRes, ProcessPInitRes, ProcessInqRes, ProcessPres
Attributes:
Attribute-Function: idle—> {} ;ProcessInitResponse—> {} ;ProcessRegFormRes—> {};

ValidateCertRes-* {}; ValidateCertlnqRes—> {} ;ProcessPInitRes—> {};
ProcessInqRes—> {} ;ProcessPres—>•

{}; Transition-Specifications:
Rl: <idle,idle>;CardCInitReq(true);true => true;

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 214

R2: <idle, ProcessInitResponse>; CardCInitRes(true); true => true;
R3: <ProcessInitResponse, idle>; RegFormReq(true); true => true;
R4: <idle, ProcessRegFormRes>; RegFormRes(true); true => true;
R5: <ProcessRegFormRes, idle>; CertReq(true); true => true;
R6: <idle, ValidateCertRes>; CertRes(true); true => true;
R7: <ValidateCertRes, idle>; CertlnqReq(true); true => true;
R8: <idle, ValidateCertInqRes>; CertlnqRes(true); true => true;
R9: <idle, idle>; PlnitReq(true); true => true;
RIO: <idle, ProcessPInitRes>; PlnitRes(true); true => true;
Rll: <ProcessPInitRes, idle>; PReq(true); true => true;
R12: <idle, ProcessPres>; PRes(true); true => true;
R13: <ProcessPres, idle>; InqReq(true); true => true;
R14: <idle, ProcessInqRes>; InqRes(true); true => true;

Time-Constraints: End

5.3 Formal Specifications for the Merchant

Agent Merchant[@B, @A, @D]
Events: Me-AqCInitReq!@A, Me-AqCInitRes?@A, CertReq!@A, CertRes?@A,

CertInqReq!@A, CertInqRes?@A, PInitReq?@B, PInitRes!@B, PReq?@B,
PRes!@B, AuthReq!@D, AuthRes?@D, AuthRevReq!@D,
AuthRevRes?@D, InqReq?@B, InqRes!@B, CapReq!@D, CapRes?@D,
CapRevReq!@D, CapRevRes?@D, CredReq!@D, CredRes?@D,

CredRevReq!@D, CredRevRes?@D, PCertReq!@D, PCertRes?@D,
BatchAdminReq!@D, BatchAdminRes?@D

States: *idle, ProcessCInitRes, ValidateCertRes, ValidateCertlnqRes,
ProcessPInitReq, ProcessPReq, ProcessAuthRes, ProcessAuthRevRes,
ProcessInqReq, ProcessCapRes, ProcessInqReq, ProcessCapRevRes,
ProcessCredRes, ProcessPCertRes, ProcessBatchAdminRes
Attributes:
Traits: idle—»{};
Attribute-Function: idle—>•{}; ProcessCInitRes—>{}; ValidateCertRes—*{};

ValidateCertlnqRes^ {}; ProcessPInitReq—> {} ;ProcessPReq,
ProcessAuthRes^- {}; ProcessAuthRevRes—»• {}; ProcessInqReq—>• { };
ProcessCapRes, ProcessInqReq—*{}; ProcessCapRevRes^{};
ProcessCredRes^> { } ;ProcessPCertRes—»• { }; ProcessBatchAdminRes—* { };

Transition-Specifications:
Rl: <idle, idle>; Me-AqCInitReq(true); true => true;
R2: <idle, ProcessCInitRes>; Me-AqCInitRes(true); true ^> true;

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 215

R3: < ProcessCInitRes, idle>; CertReq(true); true => true;
R4: <idle, ValidateCertRes>; CertRes(true); true ^> true;
R5: < ValidateCertRes, idle>; CertlnqReq(true); true => true;
R6: < idle, ValidateCertInqRes>; CertlnqRes(true); true => true;
R7: <idle, ProcessPInitReq>; PlnitReq(true); true => true;
R8: <ProcessPInitReq, idle>; PlnitRes(true); true => true;
R9: <idle, ProcessPReq>; PReq(true); true => true;
RIO: <ProcessPReq, idle>; PRes(true); true => true;
Rll: <idle, idle>; AuthReq(true); true => true;
R12: <idle, ProcessAuthRes>; AuthRes(true); true => true;
R13: <ProcessAuthRes, idle>; AuthRevReq(true); true => true;
R14: <idle, ProcessAuthRevRes>; AuthRevRes(true); true =^> true;
R15: <ProcessAuthRevRes, ProcessInqReq>; InqReq(true); true => true;
R16: <ProcessInqReq, idle>; InqRes(true); true => true;
R17: <idle, idle>; CapReq(true); true => true;
R18: <idle, processCapRes>; CapRes(true); true => true;
R19: <ProcessCapRes, ProcessInqReq>; InqReq(true); true => true;
R20: <ProcessInqReq, idle>; InqRes(true); true => true;
R21: <idle, idle>; CapRevReq(true); true => true;
R22: <idle, ProcessCapRevRes>; CapRevRes(true); true => true;
R23: <ProcessCapRevRes, idle>; CredReq(true); true => true;
R24: <idle, ProcessCredRes>; CredRes(true); true => true;
R25: <ProcessCredRes, ProcessInqReq>; InqReq(true); true => true;
R26: <ProcessInqReq, idle>; InqRes(true); true => true;
R27: <idle, idle>; CredRevReq(true); true => true;
R28: <idle, ProcessCredRes>; CredRevRes(true); true => true;
R29: <idle, idle>; PCertReq(true); true => true;
R30: <idle, ProcessPCertRes>; PCertRes(true); true => true;
R31: <idle, idle>; BatchAdminReq(true); true => true;
R32: <idle, ProcessBatchAdminRes>; BatchAdminRes(true); true => true;

Time-Constraints:
End

5.3 Formal Specifications for the Payment Gateway

Agent Payment_Gateway [@G, @E]
Events: Me-AqCInitReq!@G, Me-AqCInitRes?@G, CertReq!@G, CertRes?@G,

CertInqReq!@G, CertInqRes?@G, AuthReq?@E, AuthRes!@E,

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 216

AuthRevReq?@E, AuthRevRes!@E, CapReq?@E, CapRes!@E,
CapRevReq?@E, CapRevRes!@E, CredReq?@E, CredRes!@E,
CredRevReq?@E, CredRevRes!@E, PCertReq?@D, PCertRes!@E,
BatchAdminReq?@E, BatchAdminRes! @E

States: *idle, ProcessCInitRes, ValidateCertRes, ValidateCertlnqRes,
ProcessAuthReq, ProcessAuthRevReq, ProcessCapReq,
ProcessCapRevReq, ProcessCredReq, ProcessPCertReq, ProcessAdminReq
Attributes:
Traits:
Attribute-Function: idle—>{}; ProcessCInitRes—>{}; ValidateCertRes—»• {};

ValidateCertlnqRes—*!}; ProcessAuthReq—>{}; ProcessAuthRevReq^'{};
ProcessCapReq—>{}; ProcessCapRevReq—*{}; ProcessCredReq—»• {};
ProcessPCertReq—> { }; ProcessAdminReq-^ { };

Transition-Specifications:
Rl:<idle, idle>; Me-AqCInitReq(true); true => true;
R2: <idle, ProcessCInitRes>; Me-AqCInitRes(true); true => true;
R3: <ProcessCInitRes, idle>; CertReq(true); true => true;
R4: <idle, ValidateCertRes>; CertRes(true); true => true;
R5: <ValidateCertRes, idle>; CertlnqReq(true); true => true;
R6: <idle, ValidateCertInqRes>; CertlnqRes(true); true => true;
R7: <idle, ProcessAuthReq>; AuthReq(true); true => true;
R8: <ProcessAuthReq, idle>; AuthRes(true); true ^> true;
R9: <idle, ProcessAuthRevReq>; AuthRevReq(true); true => true;
RIO: <ProcessAuthRevReq, idle>; AuthRevRes(true); true =^> true;
Rll: <idle, ProcessCapReq>; CapReq(true); true => true;
R12: <ProcessCapReq, idle>; CapRes(true); true => true;
R13: <idle, ProcessCapRevReq>; CapRevReq(true); true => true;
R14: <ProcessCapRevReq, idle>; CapRevRes(true); true ^> true;
R15: <idle, ProcessCredReq>; CredReq(true); true => true;
R16: <ProcessCredReq, idle>; CredRes(true); true => true;
R17: <idle, ProcessCredRevReq>; CredRevReq(true); true => true;
R18: <ProcessCredRevReq, idle>; CredRevRes(true); true => true;
R19: <idle, ProcessPCertReq>; PCertReq(true); true => true;
R20: <ProcessPCertReq, idle>; PCertRes(true); true =i> true;
R21: <idle, ProcessAdminReq>; BatchAdminReq(true); true =^> true;
R22: <ProcessAdminReq, idle>; BatchAdminRes(true); true => true;

Time-Constraints:
End

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 217

5.5 Formal Specifications of the Certificate Authority

Agent CertificateAuthority[@H, @I, @W]
Events: CardCInitReq?@H, CardCInitRes?@H, RegFormReq!@H,
RegFormRes?@H, CertReq!@H, CertRes?@H, CertInqReq!@H,
CertInqRes?@H, Me-AqCInitReq! @I, Me-AqCInitRes?@I,
CertReq!@I, CertRes?@I, CertInqReq!@I, CertInqRes?@I, Me-AqCInitReq!@W,
Me-AqCInitRes?@W, CertReq!@W, CertRes?@W, CertInqReq!@W,
CertInqRes?@W
States: *idle, ProcessCardCInitReq, ProcessRegFormReq, ProcessCertReq,

ProcessCertlnqReq,
ProcessCInitReq Attributes:
Traits:
Attribute-Function: idle—»•{}; ProcessCardCInitReq—^{}; ProcessRegFormReq—»{};
ProcessCertReq—*{}; ProcessCertlnqReq—>{}; ProcessCInitReq-^{};
Transition- Specifications:

Rl: <idle, ProcessCardCInitReq>; CardCInitReq
R2: <ProcessCardCInitReq, idle>; CardCInitRes
R3: <idle, ProcessRegFormReq>; RegFormReq
R4: <ProcessRegFormReq, idle>; RegForniRes
R5: <idle, ProcessCertReq>; CertReq
R6: <ProcessCertReq, idle>; CertRes
R7: <idle, ProcessCertInqReq>; CertlnqReq
R8: <ProcessCertInqReq, idle>; CertlnqRes R9: <idle, ProcessCInitReq>;
Me-AqCInitReq RIO: <ProcessCInitReq, idle>; Me-AqCInitRes Rl 1: <idle,
ProcessCertReq>; CertReq R12: <ProcessCertReq, idle>; CertRes R13:
<idle, ProcessCertInqReq>; CertlnqReq R14: <ProcessCertInqReq, idle>;
CertlnqRes R15: <idle, ProcessCInitReq>; Me-AqCInitReq R16:
<ProcessCInitReq, idle>; Me-AqCInitRes R17: <idle, ProcessCertReq>;
CertReq R18: <ProcessCertReq, idle>; CertRes R19: <idle,
ProcessCertInqReq>; CertlnqReq R20: <ProcessCertInqReq, idle>;
CertlnqRes

Time-Constraints:
End

6. CONCLUSIONS

An agent based model, for the E-Commerce Protocol SET has been
developed. Initially, the High Architectural Diagram of the system was designed,
where the agent types with their ports and interconnections for message exchanges

D.N. Kleftouris, N. Maragos, C. Ziogou, Ch. Mouchos - An agent based approach to
modeling the secure electronic transaction protocol

 218

were defined. State machine chart diagrams modeling the operation of every agent
have been constructed. Furthermore, formal specifications have been produced to
describe analytically, in a mathematical form the specification of every agent type and
of the system configuration. The implementation of agents strictly conforms to their
state machine descriptions.

Agent based software execution modeling offers understanding and reasoning
of the functional and temporal specifications of the software implementation prior to
undertaking any development. This way validation and verification of a new software
product can be performed in a concise and systematic manner. Simulated executions
of the formal model can be conducted to study and investigate many of the issues
raised in (Griss, 2000) such as Effectiveness (For a given set of customers what
business strategy is more effective), Stability (Should customer characteristics change
a bit which business strategy is least affected), Timeliness (Do customers are served
by the system in a reasonable time in a realistic environment with many calls ?).

REFERENCES
1. Alagar, V.S. and Zheng Xi (2001). A Rigorous Approach to Modeling and

Analyzing E-Commerce Architectures. LNCS 2021, Springer Verlang, FME 2001,
pp 173-196.

2. Allen, R. and D. Muthiayen (1999). A Formal Basis for Architectural Connection.
ACM Transactions on Software Engineering and Methodology.

3. Chen, Q., M. Hsu, U. Dayal and M. Griss (2000). Multi-Agent Cooperation,
Dynamic Workflow and XML for E-Commerce Automation. In Proceedings
Autonomous Agents 2000, Barcelona, Spain, June 2000.

4. Griss, M.L. and R. Letsinger (2000). Games at Work : Agent-Mediated E-
Commerce Simulation. In Proceedings Autonomous Agents 2000, Barcelona,
Spain, June 2000.

5. Ouyang, C., L.M. Kristensen and J. Billington (2002). A Formal and Executable
Specification of the Internet Open Trading Protocol. LNCS 2455, Springer
Verlang, pp. 377-387.

6. Visa and MasterCard (1997). SET Secure Electronic Transaction Specification.
Vols. 1,2,3, Version 1.0.

7. Turban E., et all. (2002). Electronic Commerce: A Managerial Perspective.
Prentice Hall.

Authors :

D.N. Kleftouris,
N. Maragos, C. Ziogou, Ch. Mouchos
Dept of Information Technology, Technological Educational Institute of
Thessaloniki, Thessaloniki 546 06, Greece, Email : { nmarag, klefturi,
ziochr }@it.teithe.gr.

