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ON THE SMOOTHING PARAMETER IN CASE OF DATA 
FROM MULTIPLE SOURCES 

 
by 

Breaz Nicoleta 
 

Abstract. In this paper we focuse on data smoothing by spline function. The smoothing 
parameter λ  that is involved in this kind of modeling is obtained here from the generalized 
cross validation (GCV) procedure. Also for data from two sources with different weights is 
already known a GCV formula for parameter λ  given in a particular case when the smoothing 
function is a function on the  circle. We extend this formula to a more general case and in the 
same time for more than two sources. 
 
1. INTRODUCTION 
 
 We consider a regressional model written with n observational data  
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zero mean and I2σ  matrix of covariances. About the regression function we just 
know the information that f  is in some space mW  defined as 
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 Then, we can speak about a spline smoothing problem. So we obtain an 
estimate of  f  by finding mWf ∈λ  to minimize 
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It is known that the solution of this problem is the natural polynomial spline of degree 

12 −m  with knots nixi ,1, = . 
 For the beginning we consider the smoothing parameter λ  fixed. Then we can 
search a solution for (1) in a certain subspace of  mW , spaned by n appropriate chosen 
basis functions. According to [2] such basis functions are related to B-spline but here 
we are not interested in this. We just consider f of the form  
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with kB  basis functions.  



Breaz Nicoleta - On the smoothing parameter in case of data from multiple sources 
 

 

 76

 Now we rewrite the problem in matriceal form using the following notations: 
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 Also, from [2] we know that we can  write the seminorm 

( ) ( ) ( )( ) duuffJ m∫=
1

0

2
 in matriceal form cc Σ′  for some matrix Σ . Then the problem is 

to find c to minimize ccBcy Σ′+− λ2 . The solution for this problem is given as 

( ) yBnBBc ′Σ+′= −1λ . When the smoothing parameter λ  is too small we obtain some 
function f which is close to data despite of its smoothness and when λ  is too big we 
obtain some function  f  which is very smooth but is not sufficient close to data. 
 Among the methods which provide an optimal λ  from the data are the(cross 
validation)CV and (general cross validation) GCV procedures described in [2]. 
 According to CV method, λ  is the minimizer of the expression  
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with [ ]kfλ  the spline estimate using all data but the k-th data point of y. As a 
generalization, GCV procedure use a more general function  
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where ( )λA  is the influence or hat matrix given by the relation 
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From [2] we know that ( )λA  has the form ( ) ( ) BnBBBA ′Σ+′= −1λλ . Also we remind 

that an estimate for 2σ  is given by 
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 In the problem formulated here the data came from a single source. In [1], 
Feng Gao formulate this problem for two sources and give a similar GCV method for 
λ . Gao consider a particular case when  f  is a function on the circle. 
 In this paper we extend the results of Gao for more than  two sources and in 
the same time we consider a more general case for domain of function  f. 
 
2.MAIN RESULTS 
 
 We consider the case when the data came from l sources with unknown 
weights as in  
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with residual gaussian vectors defined as 
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 We assume that 22

2
2
1 ,...,, lσσσ  are unknown and lεεε ,...,, 21  are independent. 

 If we knew 22
2

2
1 ,...,, lσσσ , an estimate of function  f  is a solution of the 

variational problem given as  
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 Now we have l matrices B. 
The model becomes 
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and the variational problem is now equivalent to find c the minimizer  of  
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with Σ  some known matrix, θ  a nuisance parameter, α  a smoothing parameter and 

ir  the weighting parameters given as 
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lσσσθ ...21=  
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We can prove the following proposition: 
 
Proposition 1.  For fixed ( )lrrrr ,...,, 21=  and α  the solution of the variational 
problem (2) is  
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Proof. We denote by E the expression that has to minimize so we have the condition 
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 This condition is equivalent with  
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and the solution of this matriceal equation is  
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According to formula (3) it is important to get some estimates for   
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a GCV function that we can use for estimating r and α  in the same time. 
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 Also we use the notations 
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 We can prove the following proposition: 
 
Proposition 2.  The influence matrix ( )α,rAr  defined by  
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Proof.  The solution (3) of the variational problem (2) with the notations (4), (5), (6) 
can be written as  

rrrrrr
r yBMyBBBc

′
=

′






 Σ+

′
= −

−
1

1

,ˆ αα . 

The condition (7) becomes  



Breaz Nicoleta - On the smoothing parameter in case of data from multiple sources 
 

 

 81

( ) rrrrr yrAyBMB ⋅=
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and further 
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 In order to get a GCV formula for r  and α , first we construct for our case a 
CV-like formula. 
 Now we denote by [ ]k

rc α, , the spline estimate of c, using all but the k-th data 

point of y; also we denote by ky  the k-th data point and by kB  and rkB ,  the k-th row 
of B and rB  respectively.  
 Then the (cross validation) CV function for our model would be 
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Next we prove the corresponding leaving-out-one lemma for our case that is: 
Lemma 3.  Let be [ ]zkhr ,,α  the solution to the variational problem  
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Based on the leaving-out-one lemma now we can prove the following theorem: 
 
Theorem 4. We have the identity: 
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By the leaving out one lemma we can write that 
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below by a derivative. So we can write that  
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the kk-th entry from ( )α,rAr  matrix. 
So, according to (8), (9), (10) and (11) we can write  
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After multiplying the numerator and the denominator by ( )rIkk

1−  we obtain the results. 
 In the same manner as in [1] or [2] we generate the GCV function as follows. 
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and we have a GCV-like function 
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 This function is a generalization for the ( )λGCV  function from [2] (one 
source) and the ( )α,rGCV  function from [1] (two sources). 
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