# ON THE SMOOTHING PARAMETER IN CASE OF DATA FROM MULTIPLE SOURCES 

by<br>Breaz Nicoleta


#### Abstract

In this paper we focuse on data smoothing by spline function. The smoothing parameter $\lambda$ that is involved in this kind of modeling is obtained here from the generalized cross validation (GCV) procedure. Also for data from two sources with different weights is already known a GCV formula for parameter $\lambda$ given in a particular case when the smoothing function is a function on the circle. We extend this formula to a more general case and in the same time for more than two sources.


## 1. INTRODUCTION

We consider a regressional model written with $n$ observational data

$$
y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, \quad i=\overline{1, n}
$$

where $x_{i} \in[0,1], \varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)^{\prime} \sim N\left(0, \sigma^{2} I\right)$, a gaussian $n$ dimensional vector with zero mean and $\sigma^{2} I$ matrix of covariances. About the regression function we just know the information that $f$ is in some space $W_{m}$ defined as

$$
W_{m}=W_{m}[0,1]=\left\{f: f, f^{\prime}, \ldots, f^{(m-1)} \text { absolutely continuous, } f^{(m)} \in L_{2}\right\} .
$$

Then, we can speak about a spline smoothing problem. So we obtain an estimate of $f$ by finding $f_{\lambda} \in W_{m}$ to minimize

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-f\left(x_{i}\right)\right]^{2}+\lambda \int_{0}^{1}\left(f^{(m)}(u)\right)^{2} d u, \quad \lambda>0 \tag{1}
\end{equation*}
$$

It is known that the solution of this problem is the natural polynomial spline of degree $2 m-1$ with knots $x_{i}, i=\overline{1, n}$.

For the beginning we consider the smoothing parameter $\lambda$ fixed. Then we can search a solution for (1) in a certain subspace of $W_{m}$, spaned by $n$ appropriate chosen basis functions. According to [2] such basis functions are related to B-spline but here we are not interested in this. We just consider $f$ of the form

$$
f=\sum_{k=1}^{n} c_{k} B_{k}
$$

with $B_{k}$ basis functions.

Now we rewrite the problem in matriceal form using the following notations:

$$
\begin{gathered}
y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\prime} \\
c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{\prime} \\
B=\left(B_{i j}\right)_{\substack{1 \leq i \leq n \\
1 \leq j \leq n}}, B_{i j}=B_{j}\left(x_{i}\right) .
\end{gathered}
$$

Also, from [2] we know that we can write the seminorm $J(f)=\int_{0}^{1}\left(f^{(m)}(u)\right)^{2} d u$ in matriceal form $c^{\prime} \Sigma c$ for some matrix $\Sigma$. Then the problem is to find $c$ to minimize $\|y-B c\|^{2}+\lambda c^{\prime} \Sigma c$. The solution for this problem is given as $c=\left(B^{\prime} B+n \lambda \Sigma\right)^{-1} B^{\prime} y$. When the smoothing parameter $\lambda$ is too small we obtain some function $f$ which is close to data despite of its smoothness and when $\lambda$ is too big we obtain some function $f$ which is very smooth but is not sufficient close to data.

Among the methods which provide an optimal $\lambda$ from the data are the(cross validation) CV and (general cross validation) GCV procedures described in [2].

According to CV method, $\lambda$ is the minimizer of the expression

$$
C V(\lambda)=\frac{1}{n} \sum_{k=1}^{n}\left(y_{k}-f_{\lambda}^{[k]}\left(x_{k}\right)\right)^{2}
$$

with $f_{\lambda}^{[k]}$ the spline estimate using all data but the k-th data point of $y$. As a generalization, GCV procedure use a more general function

$$
\operatorname{GCV}(\lambda)=\frac{\frac{1}{n}\|(I-A(\lambda)) y\|^{2}}{\left[\frac{1}{n} \operatorname{Tr}(I-A(\lambda))\right]^{2}}
$$

where $A(\lambda)$ is the influence or hat matrix given by the relation

$$
\hat{y}=\left(\begin{array}{c}
f_{\lambda}\left(x_{1}\right) \\
\vdots \\
f_{\lambda}\left(x_{n}\right)
\end{array}\right)=A(\lambda) y .
$$

From [2] we know that $A(\lambda)$ has the form $A(\lambda)=B\left(B^{\prime} B+n \lambda \Sigma\right)^{-1} B^{\prime}$. Also we remind that an estimate for $\sigma^{2}$ is given by $\hat{\sigma}^{2}=\frac{\|(I-A(\lambda)) y\|^{2}}{\operatorname{Tr}(I-A(\lambda))}$.

In the problem formulated here the data came from a single source. In [1], Feng Gao formulate this problem for two sources and give a similar GCV method for $\lambda$. Gao consider a particular case when $f$ is a function on the circle.

In this paper we extend the results of Gao for more than two sources and in the same time we consider a more general case for domain of function $f$.

## 2.MAIN RESULTS

We consider the case when the data came from $l$ sources with unknown weights as in

$$
\begin{aligned}
& y_{1 i}=f\left(x_{1 i}\right)+\varepsilon_{1 i}, i=\overline{1, N_{1}} \\
& y_{2 i}=f\left(x_{2 i}\right)+\varepsilon_{2 i}, i=\overline{1, N_{2}} \\
& \ldots . \ldots \ldots \ldots \ldots \ldots \\
& y_{l i}=f\left(x_{l i}\right)+\varepsilon_{l i}, i=\overline{1, N_{l}}, \\
& N_{1}+N_{2}+\ldots+N_{l}=n,
\end{aligned}
$$

with residual gaussian vectors defined as

$$
\left.\begin{array}{l}
\varepsilon_{1}=\left(\varepsilon_{11}, \varepsilon_{12}, \ldots, \varepsilon_{1 N_{1}}\right)^{\prime} \sim N\left(0, \sigma_{1}^{2} I\right) \\
\varepsilon_{2}=\left(\varepsilon_{21}, \varepsilon_{22}, \ldots, \varepsilon_{2 N_{2}}\right)^{\prime} \sim N\left(0, \sigma_{2}^{2} I\right) \\
\ldots \ldots
\end{array}\right) .
$$

We assume that $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{l}^{2}$ are unknown and $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{l}$ are independent.
If we knew $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{l}^{2}$, an estimate of function $f$ is a solution of the variational problem given as

$$
\begin{aligned}
& \min _{f \in W_{m}} \frac{1}{N_{1}+N_{2}+\ldots+N_{l}}\left[\frac{1}{\sigma_{1}^{2}} \sum_{i=1}^{N_{1}}\left(y_{1 i}-f\left(x_{1 i}\right)\right)^{2}+\frac{1}{\sigma_{2}^{2}} \sum_{i=1}^{N_{2}}\left(y_{2 i}-f\left(x_{2 i}\right)\right)^{2}+\ldots\right. \\
& \left.+\frac{1}{\sigma_{l}^{2}} \sum_{i=1}^{N_{l}}\left(y_{l i}-f\left(x_{l i}\right)\right)^{2}\right]+\lambda J(f) .
\end{aligned}
$$

We search for $f \in W_{m}$ of the form $f=\sum_{k=1}^{n} c_{k} B_{k}$ and we use the notations

$$
\begin{gathered}
y_{1}=\left(y_{11}, y_{12}, \ldots, y_{1 N_{1}}\right)^{\prime} \\
y_{2}=\left(y_{21}, y_{22}, \ldots, y_{2 N_{2}}\right)^{\prime} \\
\ldots . \\
y_{l}=\left(y_{l 1}, y_{l 2}, \ldots, y_{l N_{l}}\right)^{\prime} \\
c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{\prime} \\
B_{1}=\left(B_{i j}\right)_{1 \leq i \leq N_{1}}, B_{i j}=B_{j}\left(x_{1 i}\right) \\
B_{2}=\left(B_{i j}\right)_{1 \leq i \leq n}, B_{1 \leq j \leq n}, B_{i j}=B_{j}\left(x_{2 i}\right) \\
\ldots \\
B_{l}=\left(B_{i j}\right)_{1 \leq i \leq N_{l}}, B_{i j}=B_{j}\left(x_{l i}\right)
\end{gathered}
$$

Now we have $l$ matrices $B$.
The model becomes

$$
\begin{aligned}
& y_{1}=B_{1} c+\varepsilon_{1} \\
& \ldots \ldots \ldots \ldots \ldots \ldots \\
& y_{l}=B_{l} c+\varepsilon_{l} \\
& \varepsilon_{i} \sim N\left(0, \sigma_{i}^{2} I\right), i=\overline{1, l}
\end{aligned}
$$

and the variational problem is now equivalent to find $c$ the minimizer of

$$
\begin{equation*}
\frac{1}{\theta \cdot n}\left(r_{1}\left\|y_{1}-B_{1} c\right\|^{2}+r_{2}\left\|y_{2}-B_{2} c\right\|^{2}+\ldots+r_{l}\left\|y_{l}-B_{l} c\right\|^{2}+\alpha c^{\prime} \Sigma c\right) \tag{2}
\end{equation*}
$$

with $\Sigma$ some known matrix, $\theta$ a nuisance parameter, $\alpha$ a smoothing parameter and $r_{i}$ the weighting parameters given as

$$
\begin{gathered}
\theta=\sigma_{1} \sigma_{2} \ldots \sigma_{l} \\
r_{i}=\frac{\sigma_{1} \sigma_{2} \ldots \sigma_{i-1} \sigma_{i+1} \ldots \sigma_{l}}{\sigma_{i}}, i=\overline{1, l}\left(r_{1} r_{2} \ldots r_{l}=1\right) \\
\alpha=\sigma_{1} \sigma_{2} \ldots \sigma_{l} \cdot \lambda \cdot n
\end{gathered}
$$

We can prove the following proposition:
Proposition 1. For fixed $r=\left(r_{1}, r_{2}, \ldots, r_{l}\right)$ and $\alpha$ the solution of the variational problem (2) is

$$
\begin{equation*}
\hat{c}_{r, \alpha}=\left(r_{1} B_{1}^{\prime} B_{1}+r_{2} B_{2}^{\prime} B_{2}+\ldots+r_{l} B_{l}^{\prime} B_{l}+\alpha \Sigma\right)^{-1}\left(r_{1} B_{1}^{\prime} y_{1}+r_{2} B_{2}^{\prime} y_{2}+\ldots+r_{l} B_{l}^{\prime} y_{l}\right) \tag{3}
\end{equation*}
$$

Proof. We denote by $E$ the expression that has to minimize so we have the condition

$$
\frac{\partial E}{\partial c}=0 .
$$

This condition is equivalent with

$$
-r_{1} B_{1}^{\prime} y_{1}+r_{1} B_{1}^{\prime} B_{1} c-\ldots-r_{l} B_{l}^{\prime} y_{l}+r_{l} B_{l}^{\prime} B_{l} c+\alpha \Sigma c=0
$$

and the solution of this matriceal equation is

$$
c=\left(r_{1} B_{1}^{\prime} B_{1}+r_{2} B_{2}^{\prime} B_{2}+\ldots+r_{l} B_{l}^{\prime} B_{l}+\alpha \Sigma\right)^{-1}\left(r_{1} B_{1}^{\prime} y_{1}+r_{2} B_{2}^{\prime} y_{2}+\ldots+r_{l} B_{l}^{\prime} y_{l}\right)
$$

According to formula (3) it is important to get some estimates for $r\left(r_{1}, r_{2}, \ldots, r_{l-1}\right.$ and $\left.r_{l}=\frac{1}{r_{1} r_{2} \ldots r_{l-1}}\right)$ and $\alpha$. Using the similar methods with [1] we give a GCV function that we can use for estimating $r$ and $\alpha$ in the same time.

We introduce the notations

$$
\begin{align*}
& y=\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{l}^{\prime}\right)^{\prime} \\
& B=\left(B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{l}^{\prime}\right)^{\prime} \tag{4}
\end{align*}
$$

and the matrix

$$
I(r)=\left(\begin{array}{ccccccc}
\frac{1}{\sqrt{r_{1}}} I_{N_{1}} & 0 & 0 & 0 & \ldots & 0 & 0  \tag{5}\\
0 & \frac{1}{\sqrt{r_{2}}} I_{N_{2}} & 0 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & \frac{1}{\sqrt{r_{l-1}}} I_{N_{l-1}} & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & \sqrt{r_{1} r_{2} \ldots r_{l-1}} I_{N_{l}}
\end{array}\right)
$$

Also we use the notations

$$
\begin{align*}
M & =\left(r_{1} B_{1}^{\prime} B_{1}+r_{2} B_{2}^{\prime} B_{2}+\ldots+r_{l} B_{l}^{\prime} B_{l}+\alpha \Sigma\right) \\
y^{r} & =I^{-1}(r) \cdot y  \tag{6}\\
B^{r} & =I^{-1}(r) \cdot B
\end{align*}
$$

We can prove the following proposition:
Proposition 2. The influence matrix $A^{r}(r, \alpha)$ defined by

$$
\begin{equation*}
\hat{y}^{r}=A^{r}(r, \alpha) y^{r} \tag{7}
\end{equation*}
$$

has the form

$$
A^{r}(r, \alpha)=\left(\begin{array}{cccc}
r_{1} B_{1} M^{-1} B_{1}^{\prime}, & \sqrt{r_{1} r_{2}} B_{1} M^{-1} B_{2}^{\prime} & \cdots & \sqrt{r_{1} r_{l}} B_{1} M^{-1} B_{l}^{\prime} \\
\sqrt{r_{1} r_{2}} B_{2} M^{-1} B_{1}^{\prime} & r_{2} B_{2} M^{-1} B_{2}^{\prime} & \cdots & \sqrt{r_{2} r_{l}} B_{2} M^{-1} B_{l}^{\prime} \\
\cdots & \cdots & \cdots & \cdots \\
\sqrt{r_{l} r_{1}} B_{l} M^{-1} B_{1}^{\prime} & \sqrt{r_{l} r_{2}} B_{l} M^{-1} B_{2}^{\prime} & \cdots & r_{l} B_{l} M^{-1} B_{l}^{\prime}
\end{array}\right)
$$

or

$$
A^{r}(r, \alpha)=B^{r} M^{-1} B^{r^{\prime}} .
$$

Proof. The solution (3) of the variational problem (2) with the notations (4), (5), (6) can be written as

$$
\hat{c}_{r, \alpha}=\left(B^{r^{\prime}} B^{r}+\alpha \Sigma\right)^{-1} B^{r^{\prime}} y^{r}=M^{-1} B^{r^{\prime}} y^{r} .
$$

The condition (7) becomes

$$
B^{r} \cdot\left[M^{-1} B^{r^{\prime}} y^{r}\right]=A^{r}(r, \alpha) \cdot y^{r}
$$

and further

$$
A^{r}(r, \alpha)=B^{r} M^{-1} B^{r^{\prime}}
$$

In order to get a GCV formula for $r$ and $\alpha$, first we construct for our case a CV-like formula.

Now we denote by $c_{r, \alpha}^{[k]}$, the spline estimate of $c$, using all but the k-th data point of $y$; also we denote by $y_{k}$ the k-th data point and by $B^{k}$ and $B^{k, r}$ the k-th row of $B$ and $B^{r}$ respectively.

Then the (cross validation) CV function for our model would be

$$
C V(r, \alpha)=\frac{1}{n} \sum_{k=1}^{n}\left(y_{k}-B^{k} c_{r, \alpha}^{[k]}\right)^{2}
$$

Next we prove the corresponding leaving-out-one lemma for our case that is:
Lemma 3. Let be $h_{r, \alpha}[k, z]$ the solution to the variational problem

$$
\min _{c} \frac{1}{\theta \cdot n}\left(r_{1}\left\|y_{1}-B_{1} c\right\|^{2}+\ldots+r_{l}\left\|y_{l}-B_{l} c\right\|^{2}+\alpha c^{\prime} \Sigma c\right)
$$

with the k-th data point $y_{k}^{r}$ replaced by $z$. Then we have

$$
h_{r, \alpha}\left[k, B^{k, r} c_{r, \alpha}^{[k]}\right]=c_{r, \alpha}^{[k]}
$$

Proof. We have

$$
\begin{aligned}
& \left(B^{k, r} c_{r, \alpha}^{[k]}-B^{k, r} c_{r, \alpha}^{[k]}\right)^{2}+\sum_{\substack{i=1 \\
i \neq k}}^{n}\left(y_{i}^{r}-B^{i, r} c_{r, \alpha}^{[k]}\right)^{2}+\alpha\left(c_{r, \alpha}^{[k]}\right)^{\prime} \Sigma c_{r, \alpha}^{[k]}= \\
& =\sum_{\substack{i=1 \\
i \neq k}}^{n}\left(y_{i}^{r}-B^{i, r} c_{r, \alpha}^{[k]}\right)^{2}+\alpha\left(c_{r, \alpha}^{[k]}\right)^{\prime} \Sigma_{r, \alpha}^{[k]} \leq
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{\substack{i=1 \\
i \neq k}}^{n}\left(y_{i}^{r}-B^{i, r} c\right)^{2}+\alpha c^{\prime} \Sigma c \leq \\
& \leq\left(B^{k, r} c_{r, \alpha}^{[k]}-B^{k, r} c\right)^{2}+\sum_{\substack{i=1 \\
i \neq k}}^{n}\left(y_{i}^{r}-B_{i}^{r} c\right)^{2}+\alpha c^{\prime} \Sigma c,(\forall) c \in R^{n}
\end{aligned}
$$

Based on the leaving-out-one lemma now we can prove the following theorem:
Theorem 4. We have the identity:

$$
C V(r, \alpha)=\frac{1}{n} \sum_{k=1}^{n} \frac{\left(I_{k}^{-1}(r) \cdot\left[I-A^{r}(r, \alpha)\right] I^{-1}(r) y\right)^{2}}{\left(I_{k}^{-1}(r) \cdot\left[I-A^{r}(r, \alpha)\right]\left(I_{k}^{-1}(r)\right)^{\prime}\right)^{2}}
$$

with $I_{k}^{-1}(r)$, the k-th row of the matrix $I^{-1}(r)$.
Proof. We consider the following identity

$$
\begin{equation*}
y_{k}-B^{k} c_{r, \alpha}^{[k]}=y_{k}-B^{k} c_{r, \alpha}^{[k]} \cdot \frac{y_{k}^{r}-B^{k, r} c_{r, \alpha}}{y_{k}^{r}-B^{k, r} c_{r, \alpha}} \tag{8}
\end{equation*}
$$

Further we have

$$
y_{k}-B^{k} c_{r, \alpha}^{[k]}=\frac{y_{k}^{r}-B^{k, r} c_{r, \alpha}}{\frac{\sqrt{r_{s_{k}}} \cdot y_{k}-\sqrt{r_{s_{k}}} B^{k} c_{r, \alpha}}{y_{k}-B^{k} c_{r, \alpha}^{[k]}}}
$$

where

$$
s_{k}=\left\{\begin{array}{c}
1 \quad \text { if } k \in\left\{1,2, \ldots, N_{1}\right\} \\
2 \quad \text { if } k \in\left\{N_{1}+1, \ldots, N_{2}\right\} \\
\ldots \ldots
\end{array} .\right.
$$

Moreover, we can write

$$
\begin{equation*}
y_{k}-B^{k} c_{r, \alpha}^{[k]}=\frac{y_{k}^{r}-B^{k, r} c_{r, \alpha}}{\sqrt{r_{s_{k}}}-\frac{B^{k, r} c_{r, \alpha}-B^{k, r} c_{r, \alpha}^{[k]}}{y_{k}-B^{k} c_{r, \alpha}^{[k]}}} \tag{9}
\end{equation*}
$$

By the leaving out one lemma we can write that

$$
\begin{aligned}
& \frac{B^{k, r} c_{r, \alpha}-B^{k, r} c_{r, \alpha}^{[k]}}{y_{k}-B^{k} c_{r, \alpha}^{k]}}=\frac{\left.\left.B^{k, r} h_{r, \alpha} \mid k, B^{k, r} c_{r, \alpha}\right]-B^{k, r} h_{r, \alpha} \mid k, B^{k, r} c_{r, \alpha}^{[k]}\right]}{y_{k}-B^{k} c_{r, \alpha}^{k]}}= \\
& =\frac{B^{k, r} h_{r, \alpha}\left[k, y_{k}^{r}\right]-B^{k, r} h_{r, \alpha}\left[k, B^{k, r} c_{r, \alpha}^{[k]}\right]}{\frac{y_{k}^{r}-B^{k, r}}{\sqrt{r_{s_{k}}}} c_{r, \alpha}^{k]}}
\end{aligned}
$$

Because $B^{k, r} c_{r, \alpha}$ is linear in each data point, we can replace the divided difference below by a derivative. So we can write that

$$
\begin{equation*}
\frac{B^{k, r} c_{r, \alpha}-B^{k, r} c_{r, \alpha}^{[k]}}{y_{k}-B^{k} c_{r, \alpha}^{[k]}}=\frac{\partial B^{k, r} c_{r, \alpha}}{\partial y_{k}^{r}} \cdot \sqrt{r_{s_{k}}} \tag{10}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\frac{\partial B^{k, r} c_{r, \alpha}}{\partial y_{k}^{r}}=a_{k k} \tag{11}
\end{equation*}
$$

the kk-th entry from $A^{r}(r, \alpha)$ matrix.
So, according to (8), (9), (10) and (11) we can write

$$
y_{k}-B^{k} c_{r, \alpha}^{[k]}=\frac{y_{k}^{r}-B^{k, r} c_{r, \alpha}}{\left(1-a_{k k}\right) \cdot I_{k k}^{-1}(r)}
$$

Moreover,

$$
y_{k}^{r}-B^{k, r} c_{r, \alpha}=y_{k}^{r}-A^{k, r}(r, \alpha) \cdot y^{r}=\left[I_{k}-A^{k, r}(r, \alpha)\right] \cdot I^{-1}(r) y
$$

where $A^{k, r}(r, \alpha), I_{k}$ is a k-th row of matrix $A^{r}(r, \alpha)$ and $I$ respectively.
So we have

$$
y_{k}-B^{k} c_{r, \alpha}^{[k]}=\frac{\left[I_{k}-A^{k, r}(r, \alpha)\right] \cdot I^{-1}(r) y}{\left(1-a_{k k}^{r}\right) \cdot I_{k k}^{-1}(r)}
$$

After multiplying the numerator and the denominator by $I_{k k}^{-1}(r)$ we obtain the results.
In the same manner as in [1] or [2] we generate the GCV function as follows.
We replace the denominator $I_{k}^{-1}(r)\left(I-A^{r}(r, \alpha)\right) I_{k}^{-1}(r)^{\prime}$ by the average

$$
\frac{1}{n} \sum_{k=1}^{n} I_{k}^{-1}(r)\left(I-A^{r}(r, \alpha)\right) I_{k}^{-1}(r)^{\prime}=\frac{1}{n} \operatorname{Tr}\left[I^{-1}(r)\left(I-A^{r}(r, \alpha)\right) \cdot I^{-1}(r)^{\prime}\right]
$$

and we have a GCV-like function

$$
G C V(r, \alpha)=\frac{\frac{1}{n}\left\|I^{-1}(r)\left[I-A^{r}(r, \alpha)\right] I^{-1}(r) y\right\|^{2}}{\left[\frac{1}{n} \operatorname{Tr}\left(I^{-1}(r)\left(I-A^{r}(r, \alpha)\right) \cdot I^{-1}(r)^{\prime}\right)\right]^{2}}
$$

This function is a generalization for the $\operatorname{GCV}(\lambda)$ function from [2] (one source) and the $G C V(r, \alpha)$ function from [1] (two sources).

## REFERENCES

[1] Gao Feng, On combining data from multiple sources with unknown relative weights, Technical Report, no. 894/1993, University of Wisconsin, Madison
[2] Wahba Grace, Spline models for observational data, SIAM, Philadelphia, CBMSNSF Regional Conference, Series in Applied Mathematics, vol. 59.

## Author:

Nicoleta Breaz, "1 Decembrie 1918" University of Alba lulia, Romania., Computer Science and Mathematics Department, e-mail: nbreaz@uab.ro

