SIGNAL IDENTIFICATION USING A MODIFY STRUCTURED NONLINEAR TOTAL LEAST NORM ALGORITHM

by R. V. Pechenkin

Abstract. This paper proceeds series of papers devoted for solving overdetermined systems (A E_{error})x = b + β_{error} where errors occur as in the matrix A as in the vector b. A problem is describe of the SNTLN modification (Structured Nonlinear Total Least Norm algorithm) for solving nonlinear system A(α)x = b. Numerical experiments have showed that performed modification is well founded.

Keywords: Total least squares, total least norm, nonlinear total least norm, overdetermined linear system, signal identification.

1. Introduction

There are some effective methods for solving nonlinear overdetermined system $A(\alpha) \approx b$. The SNTLN [3]-[4] is one of these. In this case the matrix A has Vandermond structure. The essence of the SNTLN algorithm is the optimal criterion which is next:

$$\begin{vmatrix} r(\alpha, x) \\ \alpha - \hat{\alpha} \end{vmatrix}_{p} \to \min_{\alpha, x}$$
 (1)

where r is the residual vector, $\hat{\alpha}$ is an initial estimate of the vector α which is equivalent to the matrix A, $\alpha - \hat{\alpha}$ is a correction vector. The minimum solution search is done by using a linearization procedure.

Although numerical experiments which have been done by authors of [3]-[4] show that the SNTLN is effective algorithm nevertheless in the applied problems errors occur not only in A but in b too. In fact this approach does not use the information about the system there is in vector the b (does not correct it). That is why we propose to add extra term β and reconstruct the vector b at each iteration.

2. SNTLN algorithm modification

The kernel of the parameter and frequency estimation problems which occur in practice is using functional where t and y are input and output vectors in the next form:

$$\mathbf{y}(\mathbf{t}) = \sum_{j=1}^{n} x_j f_j(\alpha, t)$$

where $f_j(\alpha, t)$ are respective functions. The essence of identification such objects is estimated α and x using measurements $\{t_i, y_i\}$ i = 0, ..., m-1 and known functions $f_j(\alpha, t)$ where m is number of measurements. This problem equivalent to the next problem of solving overdetermined system:

$$\begin{bmatrix} f_1(\alpha, t_0) & f_2(\alpha, t_0) & \dots & f_n(\alpha, t_0) \\ f_1(\alpha, t_1) & f_2(\alpha, t_1) & \dots & f_n(\alpha, t_1) \\ \dots & \dots & \dots & \dots \\ f_1(\alpha, t_{m-1}) & f_2(\alpha, t_{m-1}) & \dots & f_n(\alpha, t_{m-1}) \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_{m-1} \end{bmatrix}$$

But in fact vector $b = y(t) + \varepsilon$ are registered where ε represent the noise random or normal mostly.

The SNTLN modification consists of adding extra correction vector β . In this case the residual vector $r = b(\beta) - A(\alpha)x$ is a function depended on (α, x, β) . The optimal criterion of the modified algorithm have to be stated as:

$$\begin{vmatrix} \mathbf{r}(\alpha, \mathbf{x}, \beta) \\ \alpha - \hat{\alpha} \\ \beta \end{vmatrix}_{\mathbf{p}} \rightarrow \min_{\alpha, \mathbf{x}, \beta}$$
(2)

This problem could be solved by using a linearization procedure conformable to the residual vector $r(\alpha, x, \beta)$.

 $r(\alpha + \Delta \alpha, x + \Delta x, \beta + \Delta \beta) = r(\alpha, x, \beta) - A(\alpha) \Delta x - J(\alpha, x) \Delta \alpha + \Delta \beta$ (3) where $J(\alpha, x)$ is the Jacobian of the expression $A(\alpha)x$. If $a_i(\alpha)$ represents the i-th column of matrix $A(\alpha)$ then:

$$J(\alpha, x) = \sum_{i=1}^{n} x_i \nabla_{\alpha} a_i(\alpha) = \nabla_{\alpha} [A(\alpha)x]$$

The matrix form of the optimal criterion (2) using a linearization (3) is next:

$$\left\| \begin{bmatrix} J(\alpha, x) & A(\alpha) & -I_m \\ I_n & 0 & 0 \\ 0 & 0 & I_m \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta x \\ \Delta \beta \end{bmatrix} + \begin{bmatrix} -r \\ \alpha \\ \beta \end{bmatrix} \right\|_{p} \rightarrow \min_{\Delta \alpha, \Delta x, \Delta \beta}$$

For clarity, it is useful to make a next notation:

$$\varphi(\mathbf{x}, \alpha, \beta) = \begin{vmatrix} \mathbf{r}(\alpha, \mathbf{x}, \beta) \\ \alpha - \hat{\alpha} \\ \beta \end{vmatrix}_{p}$$

SNTLN algorithm modification

Input – $A(\hat{\alpha})$, \hat{x} , b and ϵ **Output** –, x, β and residual vector r

> 1. Set $\alpha = \hat{\alpha}, x = \hat{x}, \beta = 0$. Compute $A(\alpha), J(\alpha, x)$ set r = b - Ax2. **repeat** a) $\min_{\Delta \alpha, \Delta x, \Delta \beta} \left\| \begin{bmatrix} J(\alpha, x) & A(\alpha) & -I_m \\ I_n & 0 & 0 \\ 0 & 0 & I_m \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta x \\ \Delta \beta \end{bmatrix} + \begin{bmatrix} -r \\ \alpha \\ \beta \end{bmatrix} \right\|_p$ b) set $\delta = r(\alpha, x, \beta) - r(\alpha + \theta \Delta \alpha, x + \theta \Delta x, \beta + \theta \Delta \beta)$ c) $\min_{0 \le \theta \le 1} = \varphi (\alpha + \theta \Delta \alpha, x + \theta \Delta x, \beta + \theta \Delta \beta)$ d) $x := x + \Delta x, \alpha := \alpha + \Delta \alpha, \beta := \beta + \Delta \beta$ e) Compute $A(\alpha), J(\alpha, x)$ set r = b - Ax. **until** $\delta \ge \varepsilon$

Numerical tests have shoved that $\hat{x} = \min ||Ax - b||_2$ is a good initial estimate for the vector x. It is due to underline that the SNTLN and its modification do not require uniformly dispersion of t_i .

SNTLN modification optimality conditions for p = 2

If p = 2 step 2(a) is equivalent of minimizing the differentiable function $\delta(\alpha, x, \beta)$:

$$\delta(\alpha, \mathbf{x}, \beta) = \frac{1}{2} \mathbf{r}^{\mathrm{T}} \mathbf{r} + \frac{1}{2} (\alpha - \hat{\alpha})^{\mathrm{T}} (\alpha - \hat{\alpha}) + \frac{1}{2} \beta^{\mathrm{T}} \beta$$

The first-order optimal conditions for a local optimum δ using the relations presented above become:

$$\nabla_{\alpha} \phi = -J^{T}r + I_{n}(\alpha - \hat{\alpha}) = 0$$

$$\nabla_{x} \phi = -A(\alpha)^{T}r = 0$$

$$\nabla_{\beta} \phi = -I_{m}r + I_{m}\beta = 0$$
(4)

In fact we need to solve over-determined system at each iteration

$$\begin{bmatrix} J(\alpha, x) & A(\alpha) & -I_m \\ I_n & 0 & 0 \\ 0 & 0 & I_m \end{bmatrix} \times \begin{bmatrix} \Delta \alpha \\ \Delta x \\ \Delta \beta \end{bmatrix} = \begin{bmatrix} r \\ -\alpha \\ -\beta \end{bmatrix}$$
(5)

Let M be a matrix at the (5). Using the optimality conditions (4) normal equations for system (5) are:

$$\mathbf{M}^{\mathrm{T}}\mathbf{M}\begin{bmatrix}\Delta\alpha\\\Delta\mathbf{x}\\\Delta\beta\end{bmatrix} = \mathbf{M}^{\mathrm{T}}\begin{bmatrix}\mathbf{r}\\-\alpha\\-\beta\end{bmatrix} = -\begin{bmatrix}\nabla_{\alpha}\phi\\\nabla_{x}\phi\\\nabla_{\beta}\phi\end{bmatrix}$$
(6)

Therefore normal solution of the system (5) can be find by pseudoinverse of M or QR decomposition of $M^{T}M$. These approaches are equivalent to the minimum solution search (4).

When M - has full rank then M^TM - positive definite and there is a unique solution for the vector ($\Delta \alpha^T$, Δx^T , $\Delta \beta^T$).

This vector equals to zeros vector if and only if when right-hand-side (6) equals to zero. In fact step 2a is, in effect Gauss-Newton method which uses $M^{T}M$ as positive definite approximation to Hessian [1]. And the converge to optimum solution at step 2a SNTLNM is the same as SNTLN (at the second order rate).

3. Computational experiments

Osborne's signal [3] which is an exponential sum was chosen for computational test ($t_i \in [0, 1], i = 1...30$):

 $y(t) = 0.5 \exp(0t) + 2 \exp(-4t) - 1.5 \exp(-7t).$

Random noise $\varepsilon \in [-10^3; 10^3]$ was added to the correct values. For comparison the result the problem of fitting have been solved by using a standard lsqcurvefit function from Matlab. The computed results are tabulated at the tab 2. Additional characteristic such as $||\mathbf{r}||$ - norm of the residual vector and the relative error of the vectors α and x are tabulated at the tab2.

α_1	α_2	α_3	\mathbf{x}_1	x ₂	x ₃
0	4.0000	7.0000	0.5000	2.0000	-1.5000
0.3000	5.0000	6.5000	0.6771	3.1300	-2.8020
0.2034	4.9912	6.6508	0.6263	3.1577	-2.7862
0.1989	4.9908	6.6582	0.6241	3.1583	-2.7849
0.1569	4.9866	6.7254	0.6034	3.1665	-2.7756
	$\begin{array}{c} \alpha_1 \\ 0 \\ 0.3000 \\ 0.2034 \\ 0.1989 \\ 0.1569 \end{array}$	$\begin{array}{c c} \alpha_1 & \alpha_2 \\ \hline 0 & 4.0000 \\ 0.3000 & 5.0000 \\ 0.2034 & 4.9912 \\ 0.1989 & 4.9908 \\ 0.1569 & 4.9866 \end{array}$	$\begin{array}{c ccccc} \alpha_1 & \alpha_2 & \alpha_3 \\ \hline 0 & 4.0000 & 7.0000 \\ 0.3000 & 5.0000 & 6.5000 \\ 0.2034 & 4.9912 & 6.6508 \\ 0.1989 & 4.9908 & 6.6582 \\ 0.1569 & 4.9866 & 6.7254 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table1: Obtained results

Obtained results show that performed modification is well founded. And that standard lsqcurvefit result can be improved.

r	εα	ε _x
0.0110	0.1287	0.6806
0.0110	0.1323	0.6803
0.0096	0.1285	0.6792
	r 0.0110 0.0110 0.0096	r ε _α 0.0110 0.1287 0.0110 0.1323 0.0096 0.1285

Table2: Additional characteristics

A modification of the Structured Total Least Norm algorithm has been presented for solving a class of problem related to SNTLN. Both theoretical and computational analysis show that this modification is well-founded when right-hand-side is subject on error. Research SNTLNM algorithm in different norms p = 1, ∞ is planning as future work.

References:

- [1] E. Gill, W. Murray, H. Wright, *Practical optimization*, Academic press, London, 1981.
- [2] Rosen J. B., Park H., Glick J., Total least norm problems formulation and solution // UMSI research report. Minneapolis (Mn): Univ of Minnesota. Supercomput. Inst., 1993, 93/223, 18 p.
- [3] Rosen J. B., Park H., Glick J., Structured nonlinear total least norm problems // UMSI research report. Minneapolis (Mn): Univ of Minnesota. Supercomput. Inst., 1995, 95/152, 11 p.
- [4] Rosen J. B., Park H., Glick J., Signal identification using a least L₁ norm algorithm // UMSI research report. Minneapolis (Mn): Univ of Minnesota. Supercomput. Inst., 1998, 98/162, 12 p.

Author:

R. V. Pechenkin - Department of Mathematics Moscow State Pedagogical University, postal address: Russian Federation, Moscow, 109033 st Volochaevskay 19-31, email pechonkin@pochta ru.