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SOME SUMABILITY METHODS 
 

by 
Ioan Tincu  

 
 

Let A =‖ρk(n)‖n∈N, k=0, …, n be a matrix with ρk(n)∈R. A sequence s = {sn}n∈N is 

said to be A-summable to ρ if ρρ =⋅∑
=∞→

n

k
kkn

sn
0

)(lim . 

A sequence a = (an)n≥0 is called p, q-convex if 
 

an+2 – (p + q)an+1 + pqan ≥ 0  ,     (∀)  n ≥ 0. 
 
Let K be set of all real sequences, K+ the set of all real sequences positive, Kp, q 

the set of all p, q-convex sequences and T : Kp, q → K be a linear operator, defined as:  

T(a; n) = ∑
=

+⋅
n

k
ksk an

0
)(ρ  

where ρk(n)∈R  (n∈N) and s∈N are arbitrary. 
The purpose of this work is to determine sufficient conditions for a real 

triangular matrix ‖ρk(n)‖n∈N, k=0, …, n such that T(Kp, q) ⊆ K+. 
 
Theorem 1  

Let a = (an)n≥0∈Kp, q be given arbitrary. T(a; n)∈ K+  if  
    i) 
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     ii) 
 

0)(1

00
1 ≥








⋅⋅

⋅
∑∑
−

==
+

ik

r

rk

i

i
ik q

ppn
pq

ρ   ,           2,0 −= nk  

 
Proof. For the computations we need the following notation: ρk(n) = ρk, (∀) nk ,0= , 
n∈N. Consider 
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T(a; n) = ∑
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 + cn-2⋅as+n +as+1⋅[p⋅qc₁-(p+q)⋅c0]+p⋅q⋅c0⋅as. 
 
Therefore 
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From (1), it follows: 
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Let add those equalities for r = k,2 . We obtain: 
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c0 – pc1-qk-1⋅(ck-1 - p⋅ck) = ∑
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Let add those equalities for i = 2, …, k. We obtain: 
 

pk⋅ck - pc₁ = (pc₁-c0) ∑
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From (1) we have 
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    From (1) and (1’) it follows that: 
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it results: 
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From (2) and (3) we obtain: 
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this means i). 
    From condition ck ≥ 0 for all k from 0 to n-2 we obtain ii).   
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