CONTINUOUS SELECTIONS OF SOLUTION SETS TO SECOND ORDER EVOLUTION EQUATIONS

by Vasile Lupulescu

Abstract. We prove the existence of a continuous selection of the multivalued map $(\xi, \eta) \rightarrow A_F(\xi, \eta)$, where $A_F(\xi, \eta)$ is the set of all mild solutions of the Cauchy problem

 $x'' \in Ax + F(t, x)$, $x(0) = \xi$, $x(0) = \eta$

assuming that F is Lipschitzian with respect to x and A is the infinitesimal generator of a strongly cosine family of linear operators on a Banach space E.

AMS 2000 Subject Classification: Primary 35G25, 47D09. Secondary 47D04, 24C60 **Key words:** second order, cosine family, mild solution.

1. Introduction

The existence of continuous selections of solution sets to the Cauchy problem $\frac{1}{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$

$$x' \in F(t, x) , x(0) = \xi,$$

where F(.,.) is a Lipschitzian multifunction with respect to x, has been proved first by Cellina in [4]; some extensions have been treated in [5] and [6]. In [12] similar results are proved for Cauchy problem

 $x \in Ax + F(t, x)$, $x(0) = \xi$,

where F (, , .) is a Lipschitzian multifunction with respect to x, with nonempty closed values and -A is a maximal monotone map (resp. A is the infinitesimal generator of a C_0 -semigroup). For another the existence results for second order differential equations see [2], [10] and [14].

The purpose of the present paper is to prove the existence of a continuous mapping $(\xi, \eta) \rightarrow x(., \xi, \eta)$, is a solution of the Cauchy problem

 $x^{"} \in Ax + F(t, x)$, $x(0) = \xi$, $x(0) = \eta$

under the assumption that F(.,.) is a Lipschitzian multifunction with respect to x, with nonempty closed values and A is the infinitesimal generator of a cosine family of operators on a separable Banach space.

2. Preliminaries

Let T > 0 and E be a separable Banach space with norm $\| \cdot \|$. For $x \in E$ and A, B any two closed subset of E we define the distance from x to A by $d(x,A) := \inf \{ \| x \in A \}$

 $-y \parallel$; $y \in A$ and the Hausdorff-Pompeiu distance from A to B by $h(A,B) := \inf \{ t > 0 ; A \subset B + tU, B \subset A + tU \}$, where U := $\{x \in E ; ||x|| \le 1 \}$. For any subset A \subset E, we denote by cl(A) the closure of A. Denote by L the σ -field of Lebesgue measurable subset of [0, T] and by B(E) the family of all Borel subset of E.

Let $L^{1}([0, T], E)$ be the Banach space of all absolutely continuous functions x :

 $[0,T] \rightarrow E$ endowed with norm $||x||_1 := \int_0^T ||x(t)|| dt$, C ([0,T], E) the Banach space

of all continuous functions $x : [0, T] \to E$ with the norm $||x||_{\infty} := \sup\{x(t) ; t \in [0, T]\}$ and $C^{1}([0, T], E)$ the Banach space of all functions $x : [0, T] \to E$ which are continuous differentiable with the norm $||x||_{\infty,1} := \max\{||x||_{\infty}, ||x'||_{\infty}\}$.

Recall that a subset K of L¹ ([0,T], E) is said to be decomposable ([8]) if for every u, $v \in K$ and $A \subset L$ we have $u_{\aleph A} + v_{\aleph[0,T]\setminus A} \in K$, where $\aleph A$ is characteristic function of A. We denote by D the family of all decomposable closed nonempty subset of L¹ ([0,T], E).

Let $G : [0, T] \rightarrow 2^E$ be a multifunction. G is called L-measurable if for every closed subset A of E the set $\{t \in [0, T] : G(t) \cap A \neq \emptyset\} \in L$. A function $g : [0, T] \rightarrow E$ is called a selection of G if $g(t) \in G$ (t) for all $t \in [0, T]$. Let S be a separable metric space. A multivalued mapping $G : S \rightarrow 2^E$ is said to be lower semicontinuous (l.s.c.) if for every closed subset A of E the set $\{s \in S : G(s) \subset A\}$ is closed in E.

We say that the family { C(t) ; $t \in R$ } in the space B(E) of bounded linear operators is a strongly continuous cosine family if:

(i) C(0) = I (I is the identity operator in E),

(ii) $t \rightarrow C(t)x$ is strongly continuous for each fixed $x \in E$,

(iii) C(t + s) + C(t - s) = 2C(t)C(s) for all $t, s \in R$.

The strongly continuous sine family { S(t); $t \in R$ }, associated to the given strongly continuous cosine family {C(t); $t \in R$ }, is defined by

$$S(t)x := \int_{0}^{t} C(s)x ds , x \in E, t \in R.$$

The infinitesimal generator $A:E\to E$ of a cosine family $\{C(t)\ ;\ t\in R\ \}$ is defined by

$$Ax := \frac{d^2}{dt^2} C(0)x.$$

We denote by D(A) the domain of A, that is

 $D(A) := \{ x \in E ; C(t)x \text{ is twice continuous differentiable } \}$ and by E₀ the set

 $E_0 := \{ x \in E ; C(t)x \text{ is once continuous differentiable } \}.$

If $x \in E$ then for any t, $s \in R$ we have that $\int_{S} S(\tau) x d\tau \in E_0$ and $S(t) x \in E_0$. If

 $x \in E_0$ then $C(t)x \in E_0$ and $S(t)x \in D(A)$.

For more details on strongly continuous cosine and sine family, we refer to the book [7] and the paper [9, 11, 13, 14].

Consider a multifunction F : [0, T] \times E \rightarrow 2^E satisfying the following assumptions:

(H₁) F is $L \otimes B(E)$ -measurable,

(H₂) there exists k(.) $\in L^1([0,T], R_+)$ such that h(F(t, x), F(t, y)) $\leq k(t) ||x - y||$, for all x,y $\in E$, a.e. $t \in [0,T]$, (H₃) there exist β (.) $\in L^1([0,T], R_+)$ such that d(0, F(t, 0)) $\leq \beta$ (t) a.e. t $\in [0,T]$.

For such a multifunction F and ξ , η in E we consider the Cauchy problem $x^{"} \in Ax + F(t, x), x(0) = \xi, x(0) = \eta$ (2.1)

Definition 2.1. A function $x(.; \xi, \eta) : [0, T] \to E$ is said to be a mild solution of the Cauchy problem (CP) if there exists $f(.; \xi, \eta) \in L^1([0, T], E)$ such that:

(i) f(.; ξ , η) \in F(t, x(t; ξ , η)) for almost all t \in [0,T],

(ii) x (t;
$$\xi$$
, η) = C(t) ξ + S(t) η + $\int_{0}^{t} C(t-s)f(t;\xi,\eta)ds$

We denote by $A_F(\xi, \eta)$ the set of all mild solutions of Cauchy problem (CP). The main result is the following:

Theorem 2.2. Let $F : [0, T] \times E \rightarrow 2^E$ satisfy $(H_1) - (H_3)$. Then there exists x (.;.,.): $[0, T] \times E \times E \rightarrow E$ such that:

(a) $\mathbf{x}(.; \xi, \eta) \in A_{\mathbf{F}}(\xi, \eta)$ it for all $(\xi, \eta) \in \mathbf{E}_0 \times \mathbf{E}$,

(b) $(\xi, \eta) \rightarrow x$ (.; ξ, η) is continuous from $E_0 \times E$ into $C^1([0, T], E)$.

3. Proof of the main result

Let S be a separable metric space. To prove the main result we shall use the following lemmas.

Lemma 3.1. [6,Proposition 2.1] Let $\widetilde{F} : [0, T] \times S \to 2^{E}$ be $L \otimes B(E)$ -measurable and such that $\widetilde{F}(t, .)$ is l.s.c. for each $t \in [0, T]$. Then mapping $\widetilde{G} : S \to 2^{L^{1}} ([0, T], E)$ given by

 $\widetilde{G}(s) := \{ v \in L^1([0, T], E) ; v(t) \in \widetilde{F}(t, s) a.e. t \in [0, T] \}$

is l.s.c. with closed nonempty and decomposable values if and only if there exists a continuous mapping $\beta : S \rightarrow L_1([0,T], E)$ such that for all $s \in S$ we have $d(0, \widetilde{F}(t, s)) \leq \beta(s)(t)$, for a.e. $t \in [0, T]$.

Lemma 3.2. [6, Proposition 2.2] Let $G : S \to D$ be a l.s.c. multifunction and let $\varphi : S \to L_1([0,T], E)$ and $\psi : S \to L_1([0,T], R)$ be continuous maps. If for every $s \in S$ the set

$$\begin{split} H(s) &:= cl\{v \in G(s) ; \|u(t) - \phi(s)(t)\| < \psi(s)(t), \, a.e. \, t \in [0, \, T] \} \ (3 \ .1) \\ \text{is nonempty then the multifunction mapping } s \rightarrow H(s) \text{ defined by (3.1) admits a continuous selections.} \end{split}$$

Proof of the theorem. Let $\epsilon > 0$ be fixed, $M := max \{ t \in [0, T] sup || C(t) || , t \in [0, T] sup || C'(t) || \}$ and, for $n \in N$, let $\epsilon_n := \epsilon/2^{n+1}$.

 $\begin{array}{l} \text{For each } (\xi,\,\eta) \ \in \ E_0 \times E \ , \ \text{define } x_0(\,\,.\,\,; \ \xi,\,\eta\,) : [0\,\,,T\,\,] \ \rightarrow \ E \ \text{by } x_0(t\,; \ \xi,\,\eta\,) \\ := \ C(t) \ \xi \ + \ S(t) \ \eta \ . \\ & \text{Since} \\ & \parallel x_0(t; \ \xi_1,\,\eta_1) - x_0(t; \ \xi_2,\,\eta_2) \parallel = \parallel \ C(t)(\ \xi_1 - \ \xi_2) \ + \ S(t)(\ \eta_1 - \ \eta_2) \parallel \le M \parallel \\ (\xi_1,\,\eta_1) - (\xi_2,\,\eta_2) \parallel \\ \text{and} \\ & \parallel x_0'(t; \ \xi_1,\,\eta_1) - x_0'(t; \ \xi_2,\,\eta_2) \parallel = \parallel \ C'(t)(\ \xi_1 - \ \xi_2) \ + \ S'(t)(\ \eta_1 - \ \eta_2) \parallel \le M \parallel \\ \end{array}$

 $(\xi_1, \eta_1) - (\xi_2, \eta_2) \parallel$ we have that

 $\| x_0(t; \xi_1, \eta_1) - x_0(t; \xi_2, \eta_2) \| \le M \| (\xi_1, \eta_1) - (\xi_2, \eta_2) \|,$

hence $(\xi, \eta) \rightarrow x$ (t; ξ, η) is Lipschitzian and therefore continuous. Dene $\alpha(\xi, \eta) : [0,T] \rightarrow R$ by $\alpha(\xi, \eta)(t) := \beta(t) + k(t)||x_0(t; \xi, \eta)||$ and remark that $\alpha(., .)$ is Lipschitzian, hence continuous, from $E_0 \times E$ into $L_1([0,T], R)$. Moreover, by (H₁) and (H₂) we have

$$\begin{aligned} d(0, F(t, x_0(t; \xi, \eta))) &\leq d(0, F(t, 0)) + h(F(t, 0), F(t, x_0(t; \xi, \eta))) \\ &\leq \alpha(\xi, \eta)(t). \end{aligned}$$
 (3.2)

Let G_0(., .) : E_0 × E \rightarrow 2 $^{L^1}$ ([0 ,T], E) and H_0(., .) : E_0 × E \rightarrow 2 $^{L^1}$ ([0 ,T], E) be defined by

$$G_0(\xi, \eta) := \{ v \in L^1([0, T], E) ; v(t) \in F(t, x_0(t; \xi, \eta)) \text{ a.e. } t \in [0, T] \}$$

and

$$H_{0}(\xi, \eta) := \{ v \in G_{0}(\xi, \eta) ; \|v(t)\| < \alpha(\xi, \eta)(t) + \varepsilon_{0} \text{ a.e. } t \in [0, T] \}$$

By (3.2) and Lemma 3.1 it following that $G_0(.,.)$ is l.s.c. from $E_0 \times E$ into D and $H_0(\xi, \eta) \neq \emptyset$, for all $(\xi, \eta) \in E_0 \times E$. Then, by Lemma 3.2, there exists $h_0(.,.)$: $E_0 \times E \rightarrow L^1([0, T], E)$ a continuous selection of $H_0(.,.)$.

$$\begin{split} & \text{Let } m(t) := \int_{0}^{t} k(s) ds \text{ and for } n \geq 1 \text{define } \beta_{n}(.,.) := E_{0} \times E \to L^{1}([0,T],R) \text{ by} \\ & \beta_{n}(\xi,\,\eta)(t) = M^{n} \int_{0}^{t} \alpha(\xi,\eta) \frac{[K(t) - K(s)]^{n-1}}{(n-1)!} ds + M^{n} T(\sum_{i=1}^{n} \epsilon_{i}) \frac{[K(t)]^{n-1}}{(n-1)!} . \\ & \text{Set } f_{0}(t;\,\xi,\,\eta) := h_{0}(\xi,\,\eta)(t) \text{ and dene} \\ & x_{0}(t;\,\xi,\,\eta) := C(t)\xi + S(t)\eta + \int_{0}^{t} S(t-s)f_{0}(s;\xi,\eta) ds \ , t \in [0,T] \end{split}$$

Then $f_0(t; \xi, \eta) \in F(t, x_0(t; \xi, \eta)), ||f_0(t; \xi, \eta)|| \le \alpha(\xi, \eta)(t) + \varepsilon_0, a.e. t \in [0, T]$ and for all $t \in [0, T]$:

$$\| x_{1}(t; \xi, \eta) - x_{0}(t; \xi, \eta) \| \leq \int_{0}^{t} \| S(t-s) \| \| f_{0}(s; \xi, \eta) \| ds$$

$$\leq M \int_{0}^{t} \| f_{0}(s; \xi, \eta) \| ds \leq M \int_{0}^{t} \alpha(\xi, \eta)(s) ds + \varepsilon_{0} MT \leq \beta_{1}(\xi, \eta)(t)$$

and similarly

$$\| x'_{1}(t; \xi, \eta) - x'_{0}(t; \xi, \eta) \| \le M \int_{0}^{t} \alpha(\xi, \eta)(s) ds + \varepsilon_{0} M$$

$$\le \beta_{1}(\xi, \eta)(t)$$

Therefore,

$$||x_{1}(t; \xi, \eta) - x_{0}(t; \xi, \eta)|| \leq M(||\alpha(\xi, \eta)||_{1} + \varepsilon_{0}T).$$

We claim that there exist two sequences $(f_n(.;\xi, \eta))_{n \in N}$ and $(x_n(.;\xi, \eta))_{n \in N}$ satisfying for each $n \ge 1$ the following properties:

(i) $(\xi, \eta) \rightarrow f_n(.; \xi, \eta)$ is continuous from $E_0 \times E$ into $L^1([0, T], E)$. (ii) $f_n(.; \xi, \eta) \in F(t, x_n(t; \xi, \eta))$ for all $(\xi, \eta) \in E_0 \times E$, a.e. $t \in [0, T]$, (iii) $|| f_n(t; \xi, \eta) - f_{n-1}(t; \xi, \eta) || \le k(t)\beta_n(\xi, \eta)(t)$, a.e. $t \in [0, T]$,

(iv)
$$x_n(t; \xi, \eta) = C(t)\xi + S(t)\eta + \int_0^t S(t-s)f_{n-1}(s;\xi,\eta)ds$$
, $t \in [0,T]$

(iv). Suppose we have already constructed f_1 , f_2 ... f_n and x_1 , x_2 ... x_n satisfying (i)-(iv). Then dene $x_n(.; ., .)$ by

$$x_{n}(t; \xi, \eta) = C(t)\xi + S(t)\eta + \int_{0}^{t} S(t-s)f_{n-1}(s;\xi,\eta)ds \ , t \in [0,T]$$

and remark that (iii) and (iv) implies

$$\begin{split} \| x_{n+1}(t; \,\xi, \,\eta) - x_{n}(t; \,\xi, \,\eta) \| &\leq \int_{0}^{t} \| S(t-s) \,\| \| \,f_{n}(s;\xi,\eta) - f_{n-1}(s;\xi,\eta) \,\| \,ds \\ &\leq \int_{0}^{t} k(s) \beta_{n}(\xi,\eta)(s) ds = M^{n+1} [\int_{0}^{t} \alpha(\xi,\eta)(s) \int_{s}^{t} k(\tau) \frac{[m(t) - K(\tau)]^{n}}{n!} d\tau ds \\ &+ T(\sum_{i=1}^{n} \varepsilon_{i}) \int_{0}^{t} \frac{[m(s)]^{n}}{n!} ds \,] \\ &= M^{n+1} [\int_{0}^{t} \alpha(\xi,\eta)(s) \frac{[m(t) - m(s)]^{n}}{n!} ds + T(\sum_{i=1}^{n} \varepsilon_{i}) \int_{0}^{t} \frac{[m(t)]^{n}}{n!} ds \,] \\ &\leq \beta_{n+1}(\xi, \,\eta)(t) \end{split}$$
(3.3)

and

$$\| x'_{n+1}(t; \xi, \eta) - x'_{n}(t; \xi, \eta) \| \leq \beta_{n+1}(\xi, \eta)(t).$$
Also, by (H₂), we have that
$$d(f_{n}(t; \xi, \eta), F(t; x_{n+1}(t; \xi, \eta))) \leq k(t) \| x_{n+1}(t; \xi, \eta) - x_{n}(t; \xi, \eta) \|$$

$$\leq k(t) \beta_{n+1}(\xi, \eta)(t).$$
(3.4)
(3.4)
(3.4)
(3.4)
(3.4)

Let $G_{n+1}(.,.): E_0 \times E \rightarrow 2^{L^1([0,T], E)}$ and $H_{n+1}(.,.): E_0 \times E \rightarrow 2^{L^1([0,T], E)}$ be defined by

 $G_{n+1}(\xi, \eta) := \{ v \in L^1([0, T], E) ; v(t) \in F(t, x_n(t; \xi, \eta)) \text{ a.e. } t \in [0, T] \}$ and similary

 $H_{n+1}(\xi, \eta) := \{ v \in G_{n+1}(\xi, \eta) ; \|v(t) - f_n(\xi, \eta)\| \le k(t)\beta_{n+1}(\xi, \eta)(t). a.e. t \in [0, T] \}$

By (3.5)and Lemma 3.1 it following that $G_{n+1}(.,.)$ is l.s.c. from $E_0 \times E$ into D and $H_{n+1}(\xi, \eta) \neq \emptyset$, for all $(\xi, \eta) \in E_0 \times E$. Therefore, by Lemma 3.2, there exists $h_{n+1}(.,.) : E_0 \times E \rightarrow L^1([0, T], E)$ a continuous selection of $H_{n+1}(.,.)$ and setting $f_{n+1}(t;$

 ξ , η) := $h_{n+1}(\xi, \eta)(t)$ we obtain that $f_n(.;.,.)$ satisfies the properties (i)-(iii)and by (3.3) it follows

$$\| f_{n+1}(t; \xi, \eta) - f_{n}(t; \xi, \eta) \|_{1} = \int_{0}^{t} \| f_{n}(s; \xi, \eta) - f_{n-1}(s; \xi, \eta) \| ds$$

$$\leq M^{n} [\int_{0}^{t} \alpha(\xi, \eta)(s) \frac{[K(t) - K(s)]^{n}}{n!} ds + M^{n} T(\sum_{i=1}^{n} \varepsilon_{i}) \frac{[K(t)]^{n}}{n!}$$

$$\leq \frac{M \| k \|_{1}}{n!} (\| \alpha(\xi, \eta) \|_{1} + \varepsilon_{0} T).$$
(3.6)

By (iii) and (3.6) it follows that

$$\begin{split} \| x_{n+1}(.; \xi, \eta) - x_{n}(.; \xi, \eta) \|_{\infty} &\leq M \| f_{n}(s; \xi, \eta) - f_{n-1}(s; \xi, \eta) \|_{1} \\ &\leq \frac{[M \| k \|_{1}]^{n}}{n!} (\| \alpha(\xi, \eta) \|_{1} + \epsilon_{0} T). \end{split}$$
(3.7)

and analogues

$$\| x'_{n+1}(.; \xi, \eta) - x'_{n}(.; \xi, \eta) \|_{\infty} \le M \| f_{n}(s; \xi, \eta) - f_{n-1}(s; \xi, \eta) \|_{1}$$

$$\le \frac{[M \| k \|_{1}]^{n}}{n!} (\| \alpha(\xi, \eta) \|_{1} + \varepsilon_{0} T).$$
(3.8)

Since $(\xi, \eta) \rightarrow \alpha(\xi, \eta)$ is continuous it is locally bounded, and by (3.6) it follows that for every $(\xi, \eta) \in E_0 \times E$ the sequence $(f_n(.;\xi', \eta'))_{n \in N}$ satisfies the Cauchy condition uniformly with respect to (ξ', η') in some neighborhood of (ξ, η) . Hence if we denote by $f(.;\xi, \eta)$ the limit of the sequence $(f_n(.;\xi, \eta))_{n \in N}$ then $(\xi, \eta) \rightarrow f(.; \xi, \eta)$ is continuous from $E_0 \times E$ into $L^1([0, T], E)$.

Analogously, by (3.7) and (3.8) it follows that $(x_n(.;\xi, \eta))_{n\in\mathbb{N}}$ is a Cauchy sequence in $C^1([0,T], E)$ locally uniformly with respect to (ξ, η) . Then denoting by $x(.;\xi, \eta)$ its limit, it follows that the map $(\xi, \eta) \rightarrow x(.;\xi, \eta)$ is continuous. Moreover, since $(x_n(.;\xi, \eta))_{n\in\mathbb{N}}$ converge uniformly to $x(.;\xi, \eta)$ and since

$$\begin{split} &d(f_n(t;\,\xi,\,\eta\,),\,F\,(t;\,x(t;\,\xi,\,\eta\,))) \leq k(t) \,\|\,x_n(t;\,\xi,\,\eta\,) - x(t;\,\xi,\,\eta\,)\,\|,\\ &\text{passing to limit along a subsequence of } (f_n(\,\,.;\xi,\,\eta\,))_{n\in N} \text{ converging poi wise to } f((\,.;\xi,\,\eta\,)) \text{ we obtain that } f(\,t;\xi,\,\eta\,) \in F\,(t;\,x(t;\,\xi,\,\eta\,)), \text{ for all } (\xi,\,\eta\,) \in E_0 \times E, \text{ a.e. } t \in [0,\,T], \text{ since } F(\,.,\,.) \text{ has closed values. Passing to the limit in (iv) we obtain } \end{split}$$

x (t;
$$\xi$$
, η) = C(t) ξ + S(t) η + $\int_{0}^{t} C(t-s)f(t;\xi,\eta)ds$

and the proof is completed.

References

- [1] J. P. Aubin and H. Frankowska, Set-valued Analysis, Birkhausen, Boston, 1990.
- [2] M. Benchohra and S. K. Ntouyas, An Existence Result on Noncompact Interval for Second Order Functional Differential Inclusions, J.Math. Anal. Appl., 248(2000), 520-531.
- [3] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math., 90(1988), 69-86.
- [4] A. Cellina, On the set of solutions to lipschitzian differential inclusions, Differential and Integral Equations, 1(1988), 495-500.
- [5] A. Cellina and A. Ornelas, Representation of the attainable set for Lipschitzian differential inclusions, Rocky Mountain J.Math., 22(1992), 117-124.
- [6] R. M. Colombo, A. Fryszkowski, T. Rzezuchowski and V.Staicu, Continuous selection of solutions sets of Lipschitzian differential inclusions, Funkcial. Ekvac., 34(1991), 321-330.
- [7] H. O. Fattorini,Second Order Linear Differential Equations in Banach Spaces, North-Holland.Mathematics Studies 108.
- [8] F. Hiai and H. Umegaki, Integrals, conditions expectations and martingales of multivalued function, J. Multivariate Anal., 7(1971),149-182.
- [9] S. K. Kisynski, On cosine operator functions and one-parameter groups of operators, Studia Mathematca, 44(1972), 35-39.
- [10] S. K. Ntouyas, Global existence for functional semi linear integro differential equations, Archivum Mathematicum, 34(1998), 239-256.
- [11] M. Sova, Cosine operator functions, Dissertationes Math., 49(1966), 1-47.
- [12] V. Staicu, Continuous selections of solutions sets to evolution equations, Proc. Amer. Math. Soc., 113(1991), 403-413.
- [13] C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Hungarica 32(1978), 75-96.
- [14] V. V. Vasilev and S. I. Piskarev, Differential equations in Banach spaces II. Theory of cosine operator functions, Journal of Mathematical Siences, 2003 (to appear).

Author:

Vasile Lupulescu – "Constantin Brâncuşi" University of Târgu-Jiu, Bulevardul Republicii, Nr. 1, 210152 Târgu-Jiu, Gorj, Romania, e-mail: vasile@utgjiu.ro