A RESULT ON THE EXISTENCE OF CRITICAL POINTS

by Gabriela Clara Crișan

Abstract : The main purpose of this paper is to present a short review on two variants of the so called three critical points theorem. The first variant was given in the context of Finsler manifolds in the paper [2] and the second one is presented in under some locally linking hypotheses.

2001 Matematics Subject Classifications: 58E05

1. Preliminaries on the existence of critical points

Let M be a C^{-1} Banach manifold without boundary ($\partial M = \emptyset$) and let T(M) be the total space of tangent bundle of M. A continous function

 $\| \|: T(M) \to R_+$ is a Finsler structure on T(M) if the following conditions are satisfied:

(i) For each $x \in M$, the restriction $\| \|_x = \| \|/Tx(M)$ is an equivalent norm on Tx(M);

(ii) For each $x_0 \in M$, and k>1, there is a trivializing neighbourhood U of x_0

such that $\frac{1}{k} \parallel \parallel_{x} \leq \parallel \parallel_{x_{0}} \leq k \parallel \parallel_{x}$ for all $x \in U$.

M is said to be a Finsler manifold if it is regular (as a topological space) and if it has a Finsler structure on T(M) .

It is known that every paracompact C^1 -Banach manifold admits Finsler structures on its tangent bundle and that every C^1 -Riemannian manifold is a Finsler manifold.

Suppose that M is connected .For $x, y \in M$ define $\Omega(x, y) = \{\sigma : [0,1] \to M, C^1 such that \sigma(0) = x, \sigma(1) = y\}$. The length of curve $\sigma \in \Omega(x, y)$ is given by

$$l(\sigma) = \int_{0}^{1} \left\| \sigma(t) \right\|_{\sigma(t)} dt . \qquad (1)$$

Consider the Finsler metric on M defined as follows

 $d_F(x, y) = \inf \{ l(\sigma) \colon \sigma \in \Omega(x, y) \} .$ (2)

The pair (M, d_F) is a metric space and the induced topology is equivalent to the topology of the manifold of M (see K.Deimling [4]).

To a given Finsler structure on T(M) there correspond a dual structure on the cotangent bundle $T^*(M)$ given by

$$\|\mu\| = \sup \{\mu(x) : \|x\|_p = 1\}, \mu \in T^*(M)$$
. (3)

Let $f: M \to \Re$ be a C^1 -differentiable mapping .A locally Lipschitz continous vector field $v: M \to T(M)$ such that for each $x \in M$ the following relations are satisfied: (i) $||v_x|| \le 2||(df)_x||$

(ii) $\left(df\right)_x(v_x) \ge \left\|\left(df\right)_x\right\|^2$

where $||(df)_x||$ is given by Finsler structure on $T_x^*(M)$, is called a pseudogradient vector field of f (in short p.g.f. of f).

If M is a C^2 -Finsler manifold and $f: M \to R$ is a C^1 -differentiable mapping, then $\nabla(f) \neq \emptyset$, where

$$\nabla(\mathbf{f}) = \{ \mathbf{v} \in \mathbf{X}(M) : \mathbf{v} \text{ is p.g.f. of } f \}.$$
(4)

Let us note that if M is a Hilbert manifold with the Riemannian structure $\| \|$, the norms $\| \|_x$ come from inner product by $\| \|_x = \langle , \rangle_x^{1/2}$, and we can define a p.g.f. of f by $p \mapsto (\text{grad } f)(p)$, where (grad f)(p) is given via Riesz representation theorem by $(df)p(X) = \langle X, (gradf)(p) \rangle_p, \forall X \in T_p(M).$

Let M be a C^2 -Finsler manifold, connected and without boundary. For a C^1 -differentiable real-valued function $f: M \to R$, let us define by

$$C(f) = \left\{ p \in M : \left(df \right)_p = 0 \right\}$$
 (5)

the critical set of f and by B(f)=f(C(f)) the bifurcation set of f. The elements of C(f) are called the critical points of f and the elements of B(f) represent its critical values . If $p \notin C(f)$, $s \notin B(f)$, then p is a regular point and s is regular value of the mapping f.

For $s \in \mathbb{R}$ denote by $C_s(f) = C(f) \cap f^{-1}(s)$, the critical point set of f at the level s. It is obvious that s a regular value of f if and only if $C_s(f) = \emptyset$. We also consider the set $f^s := M_s(f) = f^{-1}((-\infty, s])$.

It is well-known that if $s \notin B(f)$ then $f^{-1}(s)$ is \emptyset or a differentiable submanifold of M, of codimension 1, and $M_s(f)$ is a differentiable submanifold with boundary of M, of codimension 0, and $\partial M_s(f) = f^{-1}(s)$.

Suppose that the manifold M and the mapping f satisfy the following hypoteses:

(a) (Completeness) (M, d_F) is a complete metric space, where d_F represents the Finsler metric on M defined by (2).

(b) (Boundedness from below) If $B=\inf \{f(x) : x \in M\}$ then $B>-\infty$.

(c) (The Palais-Smale condition) Any sequence $(x_n)_{n\geq 0}$ in M with the properties that $(f(x_n))_{n\geq 0}$ is bounded and $||(df)_{x_n}|| \to 0$ has a convergent subsequence $(x_{n_k})_{k\geq 0}$, with $x_{n_k} \to p$.

The above conditions (a)-(c) are sometimes called compactness conditions because if M is a compact manifold they are automatically verified. It is clear that the point p, which appears in condition (c) of Palais-Smale, is a critical point of f, $p \in C(f)$.

Let $v \in \nabla(f)$ be a p.g.f. of f and let $x \in M$ be a fixed point .Because v is locally Lipschitz the following Cauchy problem

$$\begin{cases} \varphi(t) = -\upsilon_{\varphi(t)} \\ \varphi(0) = x \end{cases}$$
(6),

has a unique maximal solution $\varphi^{\nu} : (\omega_{-}^{\nu}(x), \omega_{+}^{\nu}(x)) \to M$, where $\omega_{-}^{\nu}(x) < 0 < \omega_{+}^{\nu}(x)$. Denote by $\varphi_{t}^{\nu}(X)$ the above solution and by $t \to \varphi_{t}^{\nu}(x)$ the corresponding integral curve of (6). Taking into account the hypotheses (a)-(c) it follows that $\omega_{+}^{\nu}(x) = +\infty$, i.e. $\{\varphi_{t}^{\nu}\}_{t\geq 0}$ is a semigroup of diffeomorphisms of M (see K.Deimling [4].

For a vector $v \in X(M)$ let us consider the sets $Z(v) = \{p \in M : v_p = 0\}$, $Fix(\varphi^v) = \{x \in M : \varphi_t^v(x) = x, \forall t \in (\omega_-^v(x), \omega_+^v(x))\}$. It is easy to see that the following relations hold :

$$C(f) = \bigcap_{v \in \nabla(f)} Z(v) \qquad (7)$$

$$C(f) = \bigcap_{v \in \nabla(f)} Fix(\varphi^{v}) \qquad (8)$$
If $x \notin C(f)$, then $f(\varphi_{t}^{v}(x)) < f(x)$ for t>0 and $f(\varphi_{t}^{v}(x)) > f(x)$ for t<0

The following three critical points type result was proved in the paper [2].

Theorem 1: Let M be a C^2 -Finsler manifold, connected and without boundary, and let $f: M \to R$ be a C^1 -differentiable real-valued mapping. Assume that the hypotheses (a)-(c) are satisfied and there exist two local minima points off f. Then f posses at least three distinct critical points.

The following two corollaries are obtained from the above important result.

Corollary 1: Let M be a C^2 -Finsler manifold, connected and without boundary, and let $f: M \to R$ be a C^1 -differentiable real-valued mapping. Assume that the hypotheses (a)-(c) are satisfied and f has a local minimum point which is not a global minimum point. Then f posses at least three distinct critical points.

Corollary 2: Let M^m be a m-dimensional C^2 -manifold which is closed (i.e. M is compact and without boundary) and connected. If $f: M \to R$ is a C^1 -differentiable real-valued mapping with two local minima points, then f posses at least four distinct critical points.

Remark : The following exemple shows that exist smooth functions $f : \mathbb{R}^2 \to \mathbb{R}$ having two global minima points and without other critical points,

Hence some supplementary hypotheses are necessary to be imposed. The polynomial function $f(x, y) = (x^2 - x - 1)^2 + (x^2 - 1)^2$ has global minima at the points (1,2) and (-1,0) and it has no other critical points.

2. Existence of critical points under some linking conditions

In what follows we prove the existence of three critical points for a function which is bounded below and has a local linking at 0.

Definition 1:Let X be a Banach space with a direct sum decomposition $X = X^1 \oplus X^2$. The function $f \in C^1(X, R)$ has a *local linking at 0*, with respect to the pair of subspaces (X^1, X^2) , if, for some r>0, $\begin{array}{c} f(u) \ge 0, u \in X^1, \|u\| \le r, \\ f(u) \le 0, u \in X^2, \|u\| \le r. \end{array}$ *Remark*: If mapping f has a local linking at 0, then 0 is a critical point of f. Consider two sequences of subspaces: $X_0^1 \subset X_1^1 \subset ... \in X^1, X_0^2 \subset X_1^2 \subset ... \subset X^2$, such that $X^j = \overline{\bigcup X_n^j}, j = 1, 2.$ For every multi-index $\alpha = (\alpha_1, \alpha_2) \in N^2$, we denote by X_{α} the space $X_{\alpha_1}^1 \oplus X_{\alpha_2}^2$.

For every multi-index $\alpha = (\alpha_1, \alpha_2) \in N^2$, we denote by X_{α} the space $X_{\alpha_1}^+ \oplus X_{\alpha_2}^-$. Let us recall that $\alpha \leq \beta \Leftrightarrow \alpha_1 \leq \beta_1, \alpha_2 \leq \beta_2$.

We say that a sequence $(\alpha_n) \in N^2$ is *admissible* if, for every $\alpha \in N^2$ there is $m \in N$ such that $n \ge m \Longrightarrow \alpha_n \ge \alpha$.

For every $f: X \to R$, we denote by f_{α} the function f restricted to X_{α} . We shall use the following compacteness conditions.

Definition 2: Let $c \in R$ and $f \in C^1(X, R)$. The function f satisfies the $(PS)_c^*$ condition if every sequence (u_{α_n}) such that (α_n) is admissible and $u_{\alpha_n} \in X_{\alpha_n}, f(u_{\alpha_n}) \to c, f'_{\alpha_n}(u_{\alpha_n}) \to 0$, contains a subsequence which converges to a critical point of f.

Definition 3: Let $f \in C^1(X, R)$. The function f satisfied the $(PS)^*$ condition if every sequence (u_{α_n}) such that (α_n) is admissible and $u_{\alpha_n} \in X_{\alpha_n}$, sup $f(u_{\alpha_n}) \to \infty$, $f'_{\alpha_n}(u_{\alpha_n}) \to 0$, contains a subsequence which converges to a critical point of f.

Remarks: 1) When $X_n^1 := X, X_n^2 := \{0\}$ for every $n \in N$, the $(PS)_c^*$ conditions is a usual Palais-Smale conditions at the level c.

2) The $(PS)^*$ conditions implies the $(PS)_c^*$ conditions for every $c \in R$. Let us recall some standard notations in this context:

$$S_{\delta} = \{ u \in X : dist(u, S) \le \delta \},\$$

$$f^{c} = \{ u \in X : f(u) \le c \},\$$

$$K_{c} = \{ u \in X : f(u) = c, f'(u) = 0 \},\$$

Lemma 1: Let f be a function of class C^1 defined on a real Banach space X. Let $S \subset X, \varepsilon, \delta > 0$ and $c \in R$ be such that, for everv $u \in f^{-1}([c-2\varepsilon, c+2\varepsilon]) \cap S_{2\delta}$, the following inequality holds $\|f'(u)\| \ge 4\varepsilon/\delta,$ then there exists $\eta \in C([0,1] \times X, X)$ such that (i) $\eta(0, u) = u, \forall u \in X$, (ii) $f(\eta(.,u))$ is non increasing, $\forall u \in X$, (iii) $f(\eta(t,u)) < c, \forall t \in [0,1], \forall u \in f^c \cap S$, (iv) $\eta(1, f^{c+\varepsilon} \cap S) \subset f^{c-\varepsilon}$, (v) $\|\eta(t,u) - u\| \leq \delta, \forall t \in [0,1], \forall u \in X.$

Definition 4: Let A, B be closed subsets of X. By definition, $A \prec^{\infty} B$ if there is $\beta \in N^2$ such that , for every $\alpha \ge \beta$ there exist $\eta_{\alpha} \in C([0,1] \times X_{\alpha}, X_{\alpha})$ such that (i) $\eta(0,u) = u, \forall u \in X_{\alpha}$, (ii) $\eta(1,u) \in B, \forall u \in A \cap X_{\alpha}$.

Lemma 2 Let $f \in C^1(X, R)$ and $c \in R$, $\rho > 0$. Let N be an open neighborhood of K_c . Assume that f satisfies $(PS)_c^*$. Then, for all $\varepsilon > 0$ small enough, $f^{c+\varepsilon} \setminus N \prec^{\infty} f^{c-\varepsilon}$. Moreover the corresponding deformations $\eta_{\alpha} : [0,1] \times X_{\alpha} \to X_{\alpha}$ satisfy $\|\eta_{\alpha}(t,u) - u\| \le \rho, \forall t \in [0,1], \forall u \in X_{\alpha}, \quad (9)$

$$f(\eta_{\alpha}(t,u)) < c, \forall t \in]0,1], \forall u \in f_{\alpha}^{c} \setminus N.$$
(10)

Proof The condition $(PS)_c^*$ implies the existence of $\gamma > 0$ and $\beta \in N^2$ such that, for every $\alpha \ge \beta$ and $u \in f_{\alpha}^{-1}([c-2\gamma, c+2\gamma]) \cap (X_{\alpha} \setminus N)_{2\gamma}, ||f_{\alpha}(u)|| \ge \gamma$. It suffices then to choose $\delta := \min\{\gamma/2, \rho, 4\}, 0 < \varepsilon \le \delta\gamma/4$ and to apply Lemma1 to $S := X_{\alpha} \setminus N$.

Lemma 3 Let $f \in C^1(X, R)$ be bounded below and let $d := \inf_X f$. If $(PS)^*_d$ holds then d is a critical value of f.

Proof. If d is not a critical value of f, then, by Lemma2, there exist $\varepsilon > 0$ such that

$$f^{d+\varepsilon} \prec^{\infty} f^{d-\varepsilon}$$
. (11)

From the definition of d, $f_{\alpha}^{d-\varepsilon}$ is empty for all α and $f_{\alpha}^{d+\varepsilon}$ is non-empty for α large enough. This contradicts (11).

Lemma 4: Let $f \in C^1(X, R)$ be bounded below. If $(PS)^*_c$ holds for all $c \in R$, then f is coercive.

Proof. If f bounded below and not coercive then $c:=\sup\{d \in R : f^d \text{ is bounded}\}\$ is finite. It is easy to verify that K_c is bounded. Let N be an open bounded neighborhood of K_c . By Lemma2, there exist $\varepsilon > 0$ such that

$$f^{c+\varepsilon} \setminus N \prec^{\infty} f^{c-\varepsilon}.$$
 (12)

Moreover we can assume that the corresponding deformations satisfy (9) with $\rho=1$. It follows from the definition of c that $f^{c+\varepsilon/2} \setminus N$ is unbounded and that $f^{c-\varepsilon} \subset B(0,R)$ for some R>0. It follows from (9) and (12) that, for all α large enough, $f_{\alpha}^{c+\varepsilon} \setminus N \subset B(0,R+1)$. But then $f^{c+\varepsilon/2} \setminus N \subset B(0,R+1)$.

This is a contradiction.

The main result in this section is the following:

Theorem 2 Suppose that $f \in C^1(X, R)$ satisfies the following assumptions

- (A1) f has a local linking at 0;
- (A2) f satisfies $(PS)^*$;
- (A3) f maps bounded sets into bounded sets;
- (A4) f is bounded from below and $d := \inf_X f < 0$.
- Then f has least three critical points.

Proof. 1) We assume that dim X^1 and dim X^2 are positive, since the other cases are similar. By Lemma3, f achieves its minimum at some point v_0 . Supposing K:={0, v_0 } to be the critical set of f, we will be led to a contradiction. We may suppose that $r < ||v_0||/3$ and $B(v_0, r) \subset f^{d/2}$. (13)

By assumption (A2) and Lemma2 , applied to f and to g := -f, there exists $\varepsilon \in [0, -d/2[$ such that

$$f^{\varepsilon} \setminus B(0, r/3) \prec^{\infty} f^{-\varepsilon}, \qquad (14)$$
$$g^{\varepsilon} \setminus B(0, r/3) \prec^{\infty} g^{-\varepsilon}, \qquad (15)$$

 $f^{d+\varepsilon} \setminus B(v_0, r) \prec^{\infty} f^{d-\varepsilon} = \emptyset .$ (16)

Moreover, we can assume that the corresponding deformations exists for $\alpha \ge (m_0, m_0)$ and satisfy (9) with $\rho = r/2$. Assumption (A2) implies also the existence of $m_1 \ge m_0$ and $\delta > 0$ such that, for $\alpha \ge (m_1, m_1)$,

$$u \in f_{\alpha}^{-1}([d + \varepsilon, -\varepsilon]) \Longrightarrow ||f_{\alpha}(u)|| \ge \delta \quad (17)$$

2) Let us write $\alpha := (n, n)$ where $n \ge m_1$ is fixed. It follows from (13) and (16) that $f_{\alpha}^{d+\varepsilon} \subset X_{\alpha} \cap B(v_0, r) \subset f_{\alpha}^{d/2}$. (18)

Using (14) and (17), it is easy to construct a deformation $\sigma : [0,1] \times S_n^2 \to X_{\alpha}$, where $S_n^j := \{ u \in X_n^j : ||u|| = r \}$, j=1,2, such that

 $f(\sigma(t,u)) < 0, \forall t \in]0,1], \forall u \in S_n^2 \text{ and } f(\sigma(1,u)) = d + \varepsilon, \forall u \in S_n^2.$ (19) By (18) there exists $\psi \in C(B_n^2, X_\alpha)$, where $B_n^j := \{u \in X_n^j : ||u|| \le r\}$, j=1,2 such that $\psi(u) = \sigma(1,u), u \in S_n^2$,

$$\psi(B_n^2) \subset X_{\alpha} \cap B(v_0, r) \subset f_{\alpha}^{d/2}.$$
(20)

Set $Q := [0,1] \times B_n^2$ and define a mapping $\Phi : \partial Q \to f_\alpha^0$ by $\Phi(t,u) = u, t = 0, u \in B_n^2$, $\Phi(t,u) = \sigma(t,u), 0 < t < 1, u \in S_n^2$, $\Phi(t,u) = \psi(u), t = 1, u \in B_n^2$.

Lemma 4 implies the existence of R>0 such that $f^0 \subset B(0, R)$.

Hence there is a continuous extensions of Φ , $\widetilde{\Phi}: Q \to X_a$, such that

$$\sup_{Q} f\left(\widetilde{\Phi}\right) \le c_0 := \sup_{B(0,R)} f.$$
(21)

By assumption (A3), c_0 is finite.

3) Let η , depending on α , be the deformation given by (15). We claim that $\Phi(\partial Q)$ and $S := \eta(1, S_n^1)$ link nontrivially. We have to prove that, for any extension $\widetilde{\Phi} \in C(Q, X_\alpha)$ of Φ , $\widetilde{\Phi}(Q) \cap S \neq \emptyset$.

Assume, by contradiction, that

$$\eta(1, u_1) \neq \widetilde{\Phi}(t, u_2)$$
(22)

for all $u_1 \in S_n^1, u_2 \in B_n^2, t \in [0,1]$. It follows from (15), (19) and (9) that (22) holds for all $u_1 \in B_n^1, u_2 \in S_n^2, t \in [0,1]$. By (20) we obtain (22) for t =1 and for all

 $u_1 \in B_n^1, u_2 \in B_n^2$. Using homotopy invariance and Kronecker property of the degree, we have

$$\deg(F_0, \Omega, 0) = \deg(F_1, \Omega, 0) = 0 , \qquad (23)$$

where

$$\Omega := B_n^1 \times B_n^2,$$

$$F_t(u) := \eta(1, u_1) - \widetilde{\Phi}(t, u_2).$$

We obtain from (9)

 $\eta(t, u_1) \neq u_2 \qquad (24)$

for all $u_1 \in B_n^1, u_2 \in S_n^2, t \in [0,1]$. It follows from (15) that (24) holds for all $u_1 \in S_n^1, u_2 \in B_n^2, t \in [0,1]$. Let us define on $[0,1] \times \Omega$ the map $G_t(u) := \eta(t, u_1) - u_2$.

Using (23) and homotopy invariance of the degree , we have $0 = \deg(G_1, \Omega, 0) = \deg(G_0, \Omega, 0) = \deg(P_n^1 - P_n^2, \Omega, 0) \neq 0$, a contradiction.

4) Let us define
$$c := \inf_{\widetilde{\Phi} \in \Gamma} \sup_{u \in Q} f(\widetilde{\Phi}(u))$$
, where
 $\Gamma := \left\{ \widetilde{\Phi} \in C(Q, X_{\alpha}) : \widetilde{\Phi}(u) = \Phi(u), \forall u \in \partial Q \right\}$

It follows from (21) and from the preceding step that $\varepsilon \le c \le c_0$.

Assumption (A2) implies the existence of $m_2 \ge m_1$ and $\gamma > 0$ such that , for $\alpha \ge (m_2, m_2)$,

$$u \in f_{\alpha}^{-1}([\varepsilon, c_0]) \Longrightarrow \left\| f_{\alpha}(u) \right\| \ge \gamma .$$
(25)

By the standard minimax argument, $c \in [\varepsilon, c_0]$ is a critical value of f_{α} , contrary to (25).

Corollary3: Assume that $f \in C^1(X, R)$ satisfies (A2) and (A3). If f has a global minimum and a local maximum then f has a third critical point

References

[1] Andrica, D., Critical Point Theory and Some Applications, University of Ankara, 1993.

[2] Andrica, D., Note on critical point theorem, Studia Univ. Babes-Bolyai, Mathematica, XXXVIII.2, 65-73 (1993).

[3] Chang , K-C. , Infinite Dimensional Morse Theory and Multiple Solution Problems , Birkhäuser , Boston-Basel-Berlin , 1993 .

[4] Deimling, K., Nonlinear Functional Analysis, Springer-Verlag, 1985.

[5] Durfee, A. a.o., *Counting Critical Points of Real Polynomials in two Variables*, The Amer. Math. Monthly 100 (1993), no.3, 255-271.

[6] Palais , R.S. , Lusternik-Schnirelmann theory on Banach manifolds , Topology 5 (1966) , 1-16 .

[7] Palais , R.S. , Terng , C-L. , *Critical Point Theory and Submanifold Geometry* , Springer-Verlag , 1988 .

[8] Schechter , M. , *Linking Methods in Critical Point Theory* , Birkhäuser , Boston-Basel-Berlin , 1999 .

Author:

Crișan Clara Gabriela Crasna High School, Salaj, Romania