ON A SUBCLASS OF α-UNIFORM CONVEX FUNCTIONS

by Mugur Acu

Abstract. In this paper we define a subclass of α -uniform convex functions by using the Sălăgean differential operator and we obtain some properties of this class.

2000 Mathematics Subject Classifications: 30C45

Key words and Phrases: Libera type integral operator, α -uniform convex functions, Sălăgean differential operator

1. Introduction

Let H(U) be the set of functions which are regular in the unit disc U, $A = \{f \in H(U) : f(0) = f'(0) - 1 = 0 \}$, $H_U(U) = \{f \in H(U) : f \text{ is univalent in } U \}$ and $S = \{f \in A : f \text{ is univalent in } U \}$.

Let consider the integral operator $L_a: A \rightarrow A$ defined as:

$$f(z) = L_a F(z) = \frac{1+a}{z^a} \int_0^t F(t) t^{a-1} dt$$
, $a \in \mathbb{C}$, $Re(a) \ge 0$. (1)

In the case a = 1, 2, 3, ... this operator was introduced by S.D.Bernardi and it was studied by many authors in different general cases. In the form (1) was used first time by N. N. Pascu.

Let Dⁿ be the Sălăgean differential operator (see [8]) defined as:

$$D^n: A \rightarrow A$$
, $n \in \mathbb{N}$ and $D^0f(z) = f(z)$
 $D^1f(z) = Df(z) = z$ $f'(z)$, $D^nf(z) = D(D^{n-1}f(z))$

2. Preliminary results

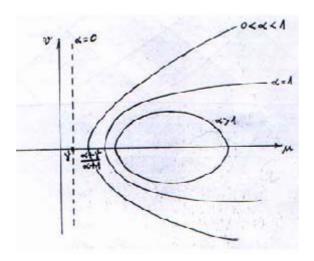
Definition 2.1 [3] Let $f \in A$. We say that f is n-uniform starlike function of order γ and type β if

$$\operatorname{Re}\left(\frac{D^{n+1}f(z)}{D^{n}f(z)}\right) \ge \beta \left|\frac{D^{n+1}f(z)}{D^{n}f(z)} - 1\right| + \gamma, z \in U$$

where $\beta \ge 0$, $\gamma \in [-1, 1)$, $\beta + \gamma \ge 0$, $n \in \mathbb{N}$. We denote this class with $US_n(\beta, \gamma)$.

 $\mbox{\bf Remark 2.1 Geometric interpretation: } f \in \, US_n(\beta\,,\gamma\,) \mbox{ if and only if } \frac{D^{n+l}f(z)}{D^nf(z)} \mbox{ take}$

all values in the convex domain included in right half plane $D_{\beta,\gamma}$ where $D_{\beta,\gamma}$ is a elliptic region for $\beta > 1$, a parabolic region for $\beta = 1$, a hyperbolic region for $0 < \beta < 1$, the half plane $u > \gamma$ for $\beta = 0$.



Remark 2.2 If we take n=0 and $\beta=1$ in definition 2.1 we obtain $US_0(1, \gamma) = SP((1-\gamma)/2, (1+\gamma)/2)$, where the class $SP(\alpha, \beta)$ was introduced by F. Ronning in [9]. Also we have $US_n(\beta, \gamma) \subset S^*$, where S^* is the well know class of starlike functions.

Definition 2.2 [3] Let $f \in A$. We say that f is α -uniform convex function, $\alpha \in [0, 1]$ if

$$\operatorname{Re}\left\{(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right)\right\} \quad \geq \quad \left|(1-\alpha)\left(\frac{zf'(z)}{f(z)} - 1\right) + \alpha\frac{zf''(z)}{f'(z)}\right|,$$

where $z \in U$. We denote this class with UM_{α} .

Remark 2.3 Geometric interpretation: $f \in UM_{\alpha}$ if and only if

$$J(\alpha, f; z) = (1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right)$$

take all values in the parabolic region $\Omega = \{w : |w-1| \le Re(w)\} = \{w = u + iv; v^2 \le 2u - 1\}$. Also we have $UM_{\alpha} \subset M_{\alpha}$, where M_{α} is the well know class of α -convex functions introduced by P. T. Mocanu in [7].

The next theorem is result of the so called "admissible functions method" introduced by P. T. Mocanu and S. S. Miller (see [4], [5], [6]).

Theorem 2.1 Let h convex in U and Re[β h(z) + γ] > 0, z \in U. If p \in H(U) with p(0) = h(0) and p satisfied the Briot-Bouquet differential subordination p(z) + $\frac{zp'(z)}{\beta p(z) + \delta} \prec$ h(z), then p(z) \prec h(z).

3. Main results

Definition 3.1 Let $\alpha \in [0, 1]$ and $n \in \mathbb{N}$. We say that $f \in A$ is in the class $UD_{n,\alpha}(\beta, \gamma)$, $\beta \geq 0$, $\gamma \in [-1, 1]$, $\beta + \gamma \geq 0$ if

$$\operatorname{Re}\left[(1-\alpha)\frac{D^{n+1}f(z)}{D^{n}f(z)} + \alpha\frac{D^{n+2}f(z)}{D^{n+1}f(z)}\right] \geq \beta\left[(1-\alpha)\frac{D^{n+1}f(z)}{D^{n}f(z)} + \alpha\frac{D^{n+2}f(z)}{D^{n+1}f(z)} - 1\right] + \gamma$$

Remark 3.1 We have $UD_{n,0}(\beta, \gamma) = US_n(\beta, \gamma) \subset S^*$, $UD_{0,\alpha}(1, 0) = UM_\alpha$ and $UD_{0,1}(\beta, \gamma) = US^c(\beta, \gamma) \subset S^c\left(\frac{\beta + \gamma}{\beta + 1}\right)$ where $US^c(\beta, \gamma)$ is the class of the uniform convex

functions of type β and order γ introduced by I. Magdaş in [2] and $S^c(\delta)$ is the well know class of convex functions of order δ .

Remark 3.2 Geometric interpretation: $f \in UD_{n,\alpha}(\beta, \gamma)$ if and only if

$$J_n(\alpha, \, f; \, z \,) = (1 - \alpha) \frac{D^{n+1} f(z)}{D^n f(z)} + \alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)}$$

take all values in the convex domain included in right half plane $D_{\beta,\gamma}$, where $D_{\beta,\gamma}$ is defined in remark 2.1.

Theorem 3.1 For all $\alpha, \alpha' \in [0, 1]$ with $\alpha < \alpha'$ we have $UD_{n,\alpha'}(\beta, \gamma) \subset UD_{n,\alpha}(\beta, \gamma)$.

Proof.

From
$$f \in UD_{n,\alpha'}(\beta, \gamma)$$
 we have

$$\operatorname{Re}\left[(1-\alpha')\frac{D^{n+1}f(z)}{D^{n}f(z)} + \alpha'\frac{D^{n+2}f(z)}{D^{n+1}f(z)}\right] \geq \beta \left[(1-\alpha')\frac{D^{n+1}f(z)}{D^{n}f(z)} + \alpha'\frac{D^{n+2}f(z)}{D^{n+1}f(z)} - 1\right] + \gamma$$

With notations
$$\frac{D^{n+1}f(z)}{D^nf(z)} = p(z)$$
, where $p(z) = 1 + p_1z + ...$ we have

$$\begin{split} zp'(z) &= z \frac{(D^{n+1}f(z))'D^nf(z) - D^{n+1}f(z)(D^nf(z))'}{(D^nf(z))^2} = \frac{D^{n+2}f(z)}{D^nf(z)} - \left(\frac{D^{n+1}f(z)}{D^nf(z)}\right)^2 \\ &\qquad \qquad \frac{zp'(z)}{p(z)} = \frac{D^{n+2}f(z)}{D^{n+1}f(z)} - \frac{D^{n+1}f(z)}{D^nf(z)} \end{split}$$

and thus we obtain

$$J_n(\alpha, f; z) = p(z) + \alpha' \cdot \frac{zp'(z)}{p(z)}$$

Now we have $p(z) + \alpha \cdot \frac{zp'(z)}{p(z)}$ take all values in the convex domain included in right half plane $D_{\beta,\gamma}$.

If we consider $h \in H_U(U)$, with h(0) = 1, which maps the unit disc U into the convex domain $D_{\beta,\gamma}$, we have Re(h(z)) > 0 and from hypothesis $\alpha' > 0$. From here follows that $Re \ \frac{1}{\alpha'} \cdot h(z) > 0$. In this conditions from theorem 2.1, whit $\delta = 0$ we obtain $p(z) \prec h(z)$, or p(z) take all values in $D_{\beta,\gamma}$.

If we consider the function $g:[0, \alpha] \to \mathbb{C}$, $g(u) = p(z) + u \cdot \frac{zp'(z)}{p(z)}$, with g(0)

= $p(z) \in D_{\beta,\gamma}$ and $g(\alpha') \in D_{\beta,\gamma}$. Since the geometric image of $g(\alpha)$ is on the segment obtained by the union of the geometric image of g(0) and $g(\alpha')$, we have $g(\alpha) \in D_{\beta,\gamma}$, or

$$p(z) + \alpha \cdot \frac{zp'(z)}{p(z)} \in D_{\beta,\gamma}.$$

Thus $J_n(\alpha, f; z)$ take all values in $D_{\beta,\gamma}$, or $f \in UD_{n,\alpha}(\beta, \gamma)$.

Remark 3.3 From theorem 3.1 we have $UD_{n,\alpha}(\beta, \gamma) \subset UD_{n,0}(\beta, \gamma)$ for all $\alpha \in [0, 1]$, and from remark 3.1 we obtain that the functions from the class $UD_{n,\alpha}(\beta, \gamma)$ are univalent.

Theorem 3.2 If $F(z) \in UD_{n,\alpha}(\beta, \gamma)$ then $f(z) = L_a(F)(z) \in US_n(\beta, \gamma)$, where L_a is the integral operator defined by (1).

Proof. From (1) we have

$$(1+a)F(z) = af(z) + zf'(z)$$

By means of the application of the linear operator D^{n+1} we obtain

$$(1+a)D^{n+1}F(z) = aD^{n+1}F(z) + D^{n+1}(zf^*(z))$$

or

$$(1+a)D^{n+1}F(z) = aD^{n+1}F(z) + D^{n+2}f(z)$$

Thus:

$$\frac{D^{n+1}F(z)}{D^{n}F(z)} = \frac{D^{n+2}f(z) + aD^{n+1}f(z)}{D^{n+1}f(z) + aD^{n}f(z)} = \frac{\frac{D^{n+2}f(z)}{D^{n+1}f(z)} \cdot \frac{D^{n+1}f(z)}{D^{n}f(z)} + a \cdot \frac{D^{n+1}f(z)}{D^{n}f(z)}}{\frac{D^{n+1}f(z)}{D^{n}f(z)} + a}$$

With notation $\frac{D^{n+1}f(z)}{D^nf(z)} = p(z)$ where $p(z) = 1 + p_1z + ...$ we have:

$$zp'(z) = z \cdot \left(\frac{D^{n+1}f(z)}{D^{n}f(z)}\right)' = \frac{z(D^{n+1}f(z))' \cdot D^{n}f(z) - D^{n+1}f(z) \cdot (D^{n}f(z))'}{(D^{n}f(z))^{2}}$$
$$= \frac{D^{n+2}f(z) \cdot D^{n}f(z) - (D^{n+1}f(z))^{2}}{(D^{n}f(z))^{2}}$$

and

$$\frac{1}{p(z)} \cdot zp'(z) = \frac{D^{n+2}f(z)}{D^{n+1}f(z)} - \frac{D^{n+1}f(z)}{D^{n}f(z)} = \frac{D^{n+2}f(z)}{D^{n+1}f(z)} - p(z)$$

It follows:

$$\frac{D^{n+2}f(z)}{D^{n+1}f(z)} = p(z) + \frac{1}{p(z)} \cdot zp(z)$$

Thus we obtain:

$$\frac{D^{n+1}F(z)}{D^nF(z)} = \frac{p(z)\cdot\left(zp'(z)\cdot\frac{1}{p(z)}+p(z)\right)+a\cdot p(z)}{p(z)+a} = p(z)+\frac{1}{p(z)+a}\cdot zp'(z).$$

If we denote $\frac{D^{n+1}F(z)}{D^nF(z)}=q(z)$, with q(0)=1, and we consider $h\in H_U(U)$, with

h(0) = 1, which maps the unit disc U into the convex domain included in right half plane $D_{\beta,\gamma}$, we have from $F(z) \in UD_{n,\alpha}(\beta,\gamma)$ (see remark 3.2):

$$q(z) + \alpha \cdot \frac{zq'(z)}{q(z)} \prec h(z)$$

From theorem 2.1, whit $\delta = 0$ we obtain q(z) < h(z), or

$$p(z) + \frac{1}{p(z) + a} \cdot zp(z) \prec h(z)$$

Using the hypothesis and the construction of the function h(z) we obtain from theorem 2.1 p(z) < h(z) or $f(z) \in US_n(\beta, \gamma)$ (see remark 2.1).

Remark 3.4 From theorem 3.2 with $\alpha = 0$ we obtain the theorem 3.1 from [1] which assert that the integral operator L_a , defined by (1), preserve the class $US_n(\beta, \gamma)$.

References

- [1] M. Acu, D. Blezu, A preserving property of a Libera type operator, Filomat, 14(2000),13-18.
- [2] A. W. Goodman, On uniformly convex function, Ann. Polon. Math., LVIII(1991), 86-92.
- [3] I. Magdaş, Doctoral thesis, University "Babes-Bolyai" Cluj-Napoca, 1999.
- [4] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Mich. Math., 28(1981), 157-171.
- [5] S. S. Miller, P. T. Mocanu, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations, 56(1985), 297-308.
- [6] S. S. Miller, P. T. Mocanu, On some classes of first order differential subordinations, Mich. Math., 32(1985), 185-195.
- [7] P. T. Mocanu, Une propriété de convexité géenéralisée dans la theorie de la representation conforme, Mathematica (Cluj), 11(34), 1969, 127-133.
- [8] Gr.Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj-Napoca, 1983.
- [9] F.Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska, Sect.A, 45(14), 1991, 117-122.

Author:

Mugur Acu - "Lucian Blaga" University, Department of Mathematics, 2400 Sibiu, Romania.