AN EXISTENCE RESULT FOR A CLASS OF NONCONVEX FUNCTIONAL DIFFERENTIAL INCLUSIONS

Vasile Lupulescu

Abstract

Let σ be a positive number and $\mathcal{C}_{\sigma}:=\mathcal{C}\left([-\sigma, 0], R^{m}\right)$ the Banach space of continuous functions from $[-\sigma, 0]$ into R^{m} and let $T(t)$ be the operator from $\mathcal{C}\left([-\sigma, T], R^{m}\right)$ into \mathcal{C}_{σ}, defined by $(T(t) x)(s):=x(t+s)$, $s \in[-\sigma, 0]$. We prove the existence of solutions for functional differential inclusion(differential inclusions with memory) $x^{\prime} \in F(T(t) x)+f(t, T(t) x)$ where F is upper semicontinuous, compact valued multifunction such that $F(T(t) x) \subset \partial V((x(t))$ on $[0, T], V$ is a proper convex and lower semicontinuous function and f is a Carathéodory single valued function.

1.Introduction

Let R^{m} be the m-dimensional euclidean space with norm $\|$.$\| and scalar$ product $\langle.,$.$\rangle . If I$ is a segment in R then we denote by $\mathcal{C}\left(I, R^{m}\right)$ the Banach space of continuous functions from I into R^{m} with the norm given by $\|x(.)\|_{\infty}:=\sup \{\|x(t)\| ; t \in I\}$. If σ is a positive number then we put $\mathcal{C}_{\sigma}:=\mathcal{C}\left([-\sigma, 0], R^{m}\right)$ and for any $t \in[0, T], T>0$, we define the operator $T(t)$ from $\mathcal{C}\left([-\sigma, T], R^{m}\right)$ into \mathcal{C}_{σ} as follows: $(T(t) x)(s):=x(t+s), s \in[-\sigma, 0]$.

Let Ω be a nonempty subset of \mathcal{C}_{σ}. For a given multifunction $F: \Omega \rightarrow 2^{R^{m}}$ and a given function $f: R \times \Omega \rightarrow R^{m}$ we consider the following functional differential inclusion (differential inclusion with memory):

$$
\begin{equation*}
x^{\prime} \in F(T(t) x)+f(t, T(t) x) . \tag{1}
\end{equation*}
$$

The existence of solutions for functional differential inclusion (1) was proved by Haddad [7] in the case in which F is upper semicontinuous and with convex
compact values and $f \equiv 0$. In paper [1], Ancona and Colombo have obtained an existence result for Cauchy problem $\mathrm{x}^{\prime} \in F(x)+f(t, x), x(0)=\xi$, where $F: R^{m} \rightarrow 2^{R^{m}}$ is an upper semicontinuous, cyclically monotone multifunction, whose compact values are contained in the subdifferential ∂V of a proper convex and lower semicontinuous function V and f is a Carathéodory single valued function.

In this paper we prove the existence of solutions for functional differential inclusion (1) in the case in which F is upper semicontinuous, compact valued multifunction such that $F(\psi) \subset \partial V(\psi(0))$ for every $\psi \in \Omega$ and V is a proper convex and lower semicontinuous function.

2.Preliminaries and statement of the main result

For $x \in R^{m}$ and $r>0$ let $B(x, r):=\left\{y \in R^{m} ;\|y-x\|<r\right\}$ be the open ball centered in x with radius r, and let $\bar{B}(x, r)$ be its closure. For $\varphi \in \mathcal{C}_{\sigma}$ let $B(\varphi, r):=\left\{\psi \in R^{m} ;\|\psi-\varphi\|<r\right\}$ and $\bar{B}(\varphi, r):=\left\{\psi \in R^{m} ;\|\psi-\varphi\| \leq r\right\}$. For $x \in R^{m}$ and for a closed subset $A \subset R^{m}$ we denote by $d(x, A)$ the distance from x to A given by $d(x, A):=\inf \{\|y-x\| ; y \in A\}$.

Let $V: R^{m} \rightarrow R$ be a proper convex and lower semicontinuous function. The multifunction $\partial V: R^{m} \rightarrow 2^{R^{m}}$, defined by

$$
\begin{equation*}
\partial V(x):=\left\{\xi \in R^{m} ; V(y)-V(x) \geq\langle\xi, y-x\rangle,(\forall) y \in R^{m}\right\} \tag{2}
\end{equation*}
$$

is called subdifferential (in the sense of convex analysis) of the function V.
We say that a multifunction $F: \Omega \rightarrow 2^{R^{m}}$ is upper semicontinuous if for every $\varphi \in \Omega$ and $\varepsilon>0$ there exists $\delta>0$ such that $\mathrm{F}(\psi) \subset F(\varphi)+$ $B(0, \varepsilon),(\forall) \psi \in B(\varphi, \delta)$.

We consider the functional differential inclusion (1) under the following assumptions:
$\left(\mathrm{h}_{1}\right) \Omega \subset \mathcal{C}_{\sigma}$ is an open set and $F: \Omega \rightarrow 2^{R^{m}}$ is upper semicontinuous with compact values;
$\left(\mathrm{h}_{2}\right)$ There exists a a proper convex and lower semicontinuous function $V: R^{m} \rightarrow R$ such that

$$
\begin{equation*}
F(\psi) \subset \partial V(\psi(0)) \tag{3}
\end{equation*}
$$

for every $\psi \in \Omega$;
$\left(\mathrm{h}_{3}\right) f: R \times \Omega \rightarrow R^{m}$ is Carathéodory function, i.e. for every $\psi \in \Omega$, $t \rightarrow f(t, \psi)$ is measurable, for a.e. $t \in R, \psi \rightarrow f(t, \psi)$ is continuous and there exists $m \in L^{2}(R)$ such that $\|f(t, \psi)\| \leq m(t)$ for a.e.t $\in R$ and all $\psi \in \Omega$.

We recall that (see [7]) a continuous function $x():.[-\sigma, T] \rightarrow R^{m}$ is said to be a solution of (1) if $x($.$) is absolutely continuous on [0, T], T(t) x \in \Omega$ for all $t \in[0, T]$ and $x^{\prime}(t) \in F(T(t) x)+f(t, T(t) x)$ for almost all $t \in[0, T]$.

Our main result is the following:
THEOREM 2.1. If $F: \Omega \rightarrow 2^{R^{m}}, f: R \times \Omega \rightarrow R^{m}$ and $V: R^{m} \rightarrow R$ satisfy assumptions (h_{1}), (h_{2}) and (h_{3}) then for every $\varphi \in \Omega$ there exists $T>0$ and $x():.[-\sigma, T] \rightarrow R^{m}$ a solution of the functional differential inclusion (1) such that $T(0) x=\varphi$ on $[-\sigma, 0]$.

3.Proof of main theorem

Let $\varphi \in \Omega$ be arbitrarily fixed. Since the multifunction $x \rightarrow \partial V(x)$ is locally bounded (see [3], Proposition 2.9) there exists $r>0$ and $M>0$ such that V is Lipschitz continuous with constant M on $B(\varphi(0), r)$. Since Ω is an open set we can choose r such that $\bar{B}(\varphi, r) \subset \Omega$. Moreover, by Proposition 1.1.3 in [2], F is also locally bounded; therefore, we can assume that

$$
\begin{equation*}
\|y\|<M \tag{4}
\end{equation*}
$$

$\forall y \in F(\psi) \operatorname{and} \psi \in B(\varphi, r)$.
Since φ is continuous on $[-\sigma, 0]$ we can choose $T^{\prime}>0$ small enough such that for a fixed $r_{1} \in(0, r / 2)$ we have

$$
\begin{equation*}
\|\varphi(t)-\varphi(s)\|<r_{1} \tag{5}
\end{equation*}
$$

for all $t, s \in[-\sigma, 0]$ with $|t-s|<T^{\prime}$.
By $\left(\mathrm{h}_{3}\right)$ there exists $T^{\prime \prime}>0$ such that

$$
\begin{equation*}
\int_{0}^{T^{\prime \prime}}(m(t)+M) d t+r_{1}<r . \tag{6}
\end{equation*}
$$

Let $0<T \leq \min \left\{\sigma, T^{\prime}, T^{\prime \prime}, r_{1} / M\right\}$. We shall prove the existence of a solution of (1) defined on the interval $[-\sigma, T]$. For this, we define a family of
approximate solutions and prove that a subsequence converges to a solution of (1).

First, we put

$$
\begin{equation*}
x_{n}(t)=\varphi(t), t \in[-\sigma, 0] . \tag{7}
\end{equation*}
$$

Further on, for $n \geq 1$ we partition $[0, T]$ by points $t_{n}^{j}:=\frac{j T}{n}, j=0,1, \ldots, n$, and, for every $t \in\left[t_{n}^{j}, t_{n}^{j+1}\right]$, we define

$$
\begin{equation*}
x_{n}(t):=x_{n}^{j}+\left(t-t_{n}^{j}\right) y_{n}^{j}+\int_{t_{n}^{j}}^{t} f\left(s, T\left(t_{n}^{j}\right) x_{n}\right) d s \tag{8}
\end{equation*}
$$

where $x_{n}^{0}=x_{n}(0):=\varphi(0)$ and

$$
\begin{gather*}
x_{n}^{j+1}=x_{n}^{j}+\frac{T}{n} y_{n}^{j}, \tag{9}\\
y_{n}^{j} \in F\left(T\left(t_{n}^{j}\right) x_{n}\right) \tag{10}
\end{gather*}
$$

for every $j \in\{0,1, \ldots, n-1\}$.
It is easy to see that for every $j \in\{0,1, \ldots, n\}$ we have

$$
\begin{equation*}
x_{n}^{j}=\varphi(0)+\frac{T}{n}\left(y_{n}^{0}+y_{n}^{1}+\ldots+y_{n}^{j-1}\right) . \tag{11}
\end{equation*}
$$

If for $t \in[0, T]$ and $n \geq 1$ we define $\theta_{n}(t)=t$ for all $t \in\left[t_{n}^{j}, t_{n}^{j+1}\right]$ then, by (9) and (10), we have

$$
\begin{equation*}
x_{n}(t)=x_{n}\left(\theta_{n}(t)\right)+\left(t-\theta_{n}(t)\right) y_{n}+\int_{\theta_{n}(t)}^{t} f_{n}(s) d s \tag{12}
\end{equation*}
$$

for every $t \in[0, T]$, where $f_{n}(t):=f\left(t, T\left(\theta_{n}(t)\right)\right), y_{n} \in F\left(T\left(\theta_{n}(t)\right) x_{n}\right)$, and

$$
\begin{equation*}
x_{n}^{\prime}(t) \in F\left(T\left(\theta_{n}(t)\right) x_{n}\right)+f_{n}(t) \tag{13}
\end{equation*}
$$

a.e. on $[0, T]$.

Moreover, since $\left|\theta_{n}(t)-t\right| \leq \frac{T}{n}$ for every $t \in[0, T]$, then $\theta_{n}(t) \rightarrow t$ uniformly on $[0, T]$.

By (11) we infer $\left\|x_{n}^{j}-\varphi(0)\right\| \leq \frac{j T}{n} M<r_{1}$, proving that $x_{n}\left(t_{n}^{j}\right)=x_{n}^{j} \in$ $B\left(\varphi(0), r_{1}\right)$ for every $j \in\{0,1, \ldots, n\}$ and $n \geq 1$ and hence that

$$
\begin{equation*}
x_{n}\left(\theta_{n}(t)\right) \in B\left(\varphi(0), r_{1}\right) \tag{14}
\end{equation*}
$$

for every $t \in[0, T]$ and for every $n \geq 1$.
Now, by $\left(\mathrm{h}_{3}\right),(4),(6),(12),(14)$ and our choose of T we have

$$
\begin{aligned}
\left\|x_{n}(t)-\varphi(0)\right\| & \leq\left\|x_{n}(t)-x_{n}\left(\theta_{n}(t)\right)\right\|+\left\|x_{n}\left(\theta_{n}(t)\right)-\varphi(0)\right\| \\
& \leq T M+\int_{0}^{T}\left\|f_{n}(s)\right\| d s+r_{1} \\
& =\int_{0}^{T}(m(s)+M)+r_{1}<r
\end{aligned}
$$

and so $x_{n}(t) \in B(\varphi(0), r)$, for every $t \in[0, T]$ and for every $n \geq 1$.
Moreover, by (4) and (13) we have $\left\|x_{n}^{\prime}(t)\right\| \leq M+m(t)$ for every $t \in[0, T]$ and for every $n \geq 1$, hence $\int_{0}^{T}\left\|x_{n}^{\prime}(t)\right\|^{2} d t \leq \int_{0}^{T}(M+m(t))^{2} d t$ and therefore the sequence $\left(x_{n}^{\prime}\right)_{n}$ is bounded in $L^{2}\left([0, T], R^{m}\right)$.

For all $t, s \in[0, T]$, we have $\left\|x_{n}(t)-x_{n}(s)\right\| \leq\left|\int_{s}^{t}\right|\left|x_{n}^{\prime}(\tau)\right||d \tau| \leq \mid \int_{0}^{T}(M+$ $m(\tau)) d \tau \mid$ so that the sequence $\left(x_{n}\right)_{n}$ is equiuniformly continuous.

Therefore, $\left(x_{n}^{\prime}\right)_{n}$ is bounded in $L^{2}\left([0, T], R^{m}\right)$ and $\left(x_{n}\right)_{n}$ is bounded in $\mathcal{C}\left([0, T], R^{m}\right)$ and equiuniformly continuous on $[0, T]$, hence, by Theorem 0.3.4 in [2], there exists a subsequence, still denoted by $\left(x_{n}\right)_{n}$, and an absolute continuous function $x:[0, T] \rightarrow R^{m}$ such that:
(i) $\left(x_{n}\right)_{n}$ converges uniformly on $[0, T]$ to x;
(ii) $\left(x_{n}^{\prime}\right)_{n}$ converges weakly in $L^{2}\left([0, T], R^{m}\right)$ to x^{\prime}.

Moreover, since by (7) all functions x_{n} agree with φ on $[-\sigma, 0]$, we can obviously say that $x_{n} \rightarrow x$ on $[-\sigma, T]$, if we extend x in such a way that $x \equiv \varphi$ on $[-\sigma, 0]$. By the uniform convergence of x_{n} to x on $[0, T]$ and the uniform convergence of θ_{n} to t on $[0, T]$ we deduce that $x_{n}\left(\theta_{n}(t)\right) \rightarrow x(t)$ uniformly on $[0, T]$. Also, it is clearly that $T(0) x=\varphi$ on $[-\sigma, 0]$.

Further on, let us denote the modulus continuity of a function ψ defined on interval I of R by $\omega(\psi, I, \varepsilon):=\sup \{\|\psi(t)-\psi(s)\| ; s, t \in I,|s-t|<\varepsilon\}, \varepsilon>0$.

Then we have (see [6]):

$$
\begin{aligned}
\left\|T\left(\theta_{n}(t)\right) x_{n}-T(t) x_{n}\right\|_{\infty} & =-\sigma \leq s \leq 0 \sup \left\|x_{n}\left(\theta_{n}(t)+s\right)-x_{n}(t+s)\right\| \\
& \leq \omega\left(x_{n},[-\sigma, T], \frac{T}{n}\right) \\
& \leq \omega\left(\varphi,[-\sigma, 0], \frac{T}{n}\right)+\omega\left(x_{n},[0, T], \frac{T}{n}\right) \\
& \leq \omega\left(\varphi,[-\sigma, 0], \frac{T}{n}\right)+\frac{T}{n} M,
\end{aligned}
$$

hence

$$
\begin{equation*}
\left\|T\left(\theta_{n}(t)\right) x_{n}-T(t) x_{n}\right\|_{\infty} \leq \delta_{n} \tag{15}
\end{equation*}
$$

for every $n \geq 1$, where $\delta_{n}:=\omega\left(\varphi,[-\sigma, 0], \frac{T}{n}\right)+\frac{T}{n} M$.
Thus, by continuity of φ, we have $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$ and hence $\left\|T\left(\theta_{n}(t)\right) x_{n}-T(t) x_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$ and since the uniform convergence of x_{n} to x on $[-\sigma, T]$ implies

$$
\begin{equation*}
T(t) x_{n} \rightarrow T(t) x \tag{16}
\end{equation*}
$$

uniformly on $[-\sigma, 0]$, we deduce that

$$
\begin{equation*}
T\left(\theta_{n}(t)\right) x_{n} \rightarrow T(t) x \tag{17}
\end{equation*}
$$

in C_{σ}.
Now, we have to estimate $\left\|\left(T\left(\theta_{n}(t)\right) x_{n}\right)(s)-\varphi(s)\right\|$ for each $s \in[-\sigma, 0]$. If $-\theta_{n}(t) \leq s \leq 0$, then $\theta_{n}(t)+s \geq 0$ and there exists $j \in\{0,1, \ldots, n-1\}$ such that $\theta_{n}(t)+s \in\left[t_{n}^{j}, t_{n}^{j+1}\right]$.

Thus, by (5), (14) and by the fact that $\left|\theta_{n}(t)-t\right| \leq T$ and $|s| \leq T$, we have

$$
\begin{aligned}
& \left\|\left(T\left(\theta_{n}(t)\right) x_{n}\right)(s)-\varphi(s)\right\|=\left\|x_{n}\left(\theta_{n}(t)+s\right)-\varphi(s)\right\| \\
& \leq\left\|x_{n}\left(\theta_{n}(t)+s\right)-\varphi(0)\right\|+\|\varphi(s)-\varphi(0)\| \\
& \leq r_{1}+r_{1}<r .
\end{aligned}
$$

If $-\sigma \leq s \leq-\theta_{n}(t)$ then $s+\theta_{n}(t) \leq 0$ and by (5) we have

$$
\left\|\left(T\left(\theta_{n}(t)\right) x_{n}\right)(s)-\varphi(s)\right\|=\left\|x_{n}\left(\theta_{n}(t)+s\right)-\varphi(s)\right\| \leq r_{1}<r .
$$

Therefore, $T\left(\theta_{n}(t)\right) x_{n} \in B(\varphi, r)$, for every $t \in[0, T]$ and for every $n \geq 1$ and so that, by (16), $T(t) x \in \bar{B}(\varphi, r) \subset \Omega$ on $[-\sigma, 0]$.

Further on, by (13) and (15) we have

$$
\begin{equation*}
d\left(\left(T(t) x_{n}, x_{n}^{\prime}(t)-f_{n}(t)\right), \operatorname{graph}(F)\right) \leq \delta_{n} \tag{18}
\end{equation*}
$$

for every $n \geq 0$.

By $\left(\mathrm{h}_{3}\right)$ and (16) we have $f_{n}():.=f\left(., T(.) x_{n}\right) \rightarrow f(., T() x$.$) in L^{2}\left([0, T], R^{m}\right)$ and hence by (ii), (18) and Theorem 1.4.1 in [2] we obtain that

$$
\begin{equation*}
x^{\prime}(t) \in \operatorname{co}(T(t) x)+f(t, T(t) x) \tag{19}
\end{equation*}
$$

a.e. on $[0, T]$,
where co stands for the closed convex hull.
By $\left(\mathrm{h}_{2}\right)$ we have that

$$
\begin{equation*}
x^{\prime}(t)-f(t, T(t) x) \in \partial V(x(t)) \tag{20}
\end{equation*}
$$

a.e. on $[0, T]$.

Since the functions $t \rightarrow x(t)$ and $t \rightarrow \partial V(x(t))$ are absolutely continuous, we obtain from Lemma 3.3 in [4] and (19) that

$$
\frac{d}{d t} V(x(t))=\left\langle x^{\prime}(t), x^{\prime}(t)-f(t, T(t) x)\right\rangle
$$

a.e. on $[0, T]$;
therefore,

$$
\begin{equation*}
V(x(T))-V(x(0))=\int_{0}^{T}\left\|x^{\prime}(t)\right\|^{2} d t-\int_{0}^{T}\left\langle x^{\prime}(t), f(t, T(t) x)\right\rangle d t \tag{21}
\end{equation*}
$$

On the other hand, since

$$
\mathrm{x}_{n}^{\prime}(t)-f_{n}(t) \in F\left(T\left(t_{n}^{j}\right) x_{n}\right) \subset \partial V\left(x_{n}\left(t_{n}^{j}\right)\right) \forall t \in\left[t_{n}^{j}, t_{n}^{j+1}\right],
$$

it follows that

$$
\begin{aligned}
V\left(x_{n}\left(t_{n}^{j+1}\right)\right)-V\left(x_{n}\left(t_{n}^{j}\right)\right) & \geq\left\langle x_{n}^{\prime}(t)-f_{n}(t), x_{n}\left(t_{n}^{j+1}\right)-x_{n}\left(t_{n}^{j}\right)\right\rangle= \\
\left\langle x_{n}^{\prime}(t)-f_{n}(t), \int_{t_{n}^{j}}^{t_{n}^{j+1}} x_{n}^{\prime}(t) d t\right\rangle & =\int_{t_{n}^{j}}^{t_{n}^{j+1}}\left\|x_{n}^{\prime}(t)\right\|^{2} d t-\int_{t_{n}^{j}}^{t_{n}^{j+1}}\left\langle f_{n}(t), x_{n}^{\prime}(t)\right\rangle d t .
\end{aligned}
$$

By adding the n inequalities from above, we obtain

$$
\begin{equation*}
V\left(x_{n}(T)\right)-V(x(0)) \geq \int_{0}^{T}\left\|x_{n}^{\prime}(t)\right\|^{2} d t-\int_{0}^{T}\left\langle f_{n}(t), x_{n}^{\prime}(t)\right\rangle d t \tag{22}
\end{equation*}
$$

Thus, the convergence of $\left(f_{n}\right)_{n}$ in L^{2}-norm and of and $\left(x_{n}^{\prime}\right)_{n}$ in the weak topology of L^{2} implies that

$$
\lim _{n \rightarrow \infty} \int_{0}^{T}\left\langle f_{n}(t), x_{n}^{\prime}(t)\right\rangle d t=\int_{0}^{T}\left\langle f(t), x^{\prime}(t)\right\rangle d t
$$

By passing to the limit for $n \rightarrow \infty$ in (22) and using the continuity of V, a comparison with (21), we obtain

$$
\left\|x^{\prime}\right\|_{L^{2}}^{2} \geq \lim \sup _{n \rightarrow \infty}\left\|x_{n}^{\prime}\right\|_{L^{2}}^{2}
$$

Since, by the weak lower semicontinuity of the norm, $\left\|\mid x^{\prime}\right\|_{L^{2}}^{2} \leq \liminf _{n \rightarrow \infty}\left\|x_{n}^{\prime}\right\|_{L^{2}}^{2}$, we have that $\left\|x^{\prime}\right\|_{L^{2}}^{2}=\lim _{n \rightarrow \infty}\left\|x_{n}^{\prime}\right\|_{L^{2}}^{2}$ i.e. $\left(x_{n}^{\prime}\right)_{n}$ converges strongly in $L^{2}\left([0, T], R^{m}\right)$ (see [5], Proposition III.30). Hence there exists a subsequence (again denote by) $\left(x_{n}^{\prime}\right)_{n}$ which converges pointwiesely a.e. to x^{\prime}.

Since by $\left(\mathrm{h}_{1}\right)$ the graph of F is closed and, by (18), $\lim _{n \rightarrow \infty} d\left(\left(T(t) x_{n}, x_{n}^{\prime}(t)-\right.\right.$ $\left.\left.f_{n}(t)\right), \operatorname{graph}(F)\right)=0$, we obtain that $x^{\prime}(t) \in F(T(t) x)+f(t, T(t) x)$ a.e.on $[0, T]$ and so functional differential inclusion (1) does have solutions.

References

[1] F. Ancona and G. Colombo, Existence of Solutions for a Class of Nonconvex Differential Inclusions, Rend. Sem. Mat. Univ. Padova, 83(1990), 71-76.
[2] J.P. Aubin and A. Cellina, Differential inclusions, Berlin, Springer-Verlag, 1984.
[3] A. Bressan, A. Cellina and G. Colombo, Upper semicontinuous differential inclusions without convexity, Proc. Amer. Math. Soc., 106(1989), 771-775.
[4] H. Brezis, Operateurs Maximaux Monotones et Semigroups de Contractions Dans Les Espaces de Hilbert, Amsterdam, North-Holland, 1973.
[5] H. Brezis, Analyse Functionelle, Théorie et Applications, Paris, Masson, 1983.
[6] C. Casting and M.D.P. Monteiro Marques, Topological Properties of Solution Sets for Sweeping Processes with delay, Port. Math., 54(4)(1997), 485507.
[7] G. Haddad, Topological Properties of Sets Solutions for Functional Differential Inclusions, Nonlinear Analysis, T.M.A, 5(12)(1981), 1349-1366.
V. Lupulescu:

Department of Mathematics
"'Constantin Brancusi"' University of Targu-Jiu
No. 1, Republicii Street
1400, Targu-Jiu, Romania
email:vasile@utgjiu.ro

