RESIDUAL TRANSCENDENTAL EXTENSIONS OF A VALUATION

Alexandru Zaharescu

Abstract

Let K be a field and v a valuation on K. We discuss some properties of extensions w of v to the field $K\left(X_{1}, \ldots, X_{n}\right)$ of rational functions in n variables over K, for which the residue field of w has transcendence degree n over the residue field of v.

2000 Mathematics Subject Classification: 12J20, 12F20.

1.Introduction

Let K be a field and v a valuation on K. Residual transcendental extensions of v to the field $K(X)$ of rational functions in one variable over K have been studied in a number of articles, including [8], [9], [10], [11], [13], [1], [2], [3] and [14]. Nagata [8] conjectured that if w is a residual transcendental extension of v to $K(X)$, then the residue field k_{w} of w is a simple transcendental extension of a finite algebraic extension of the residue field k_{v} of v. The problem was solved by Ohm [10] and by Popescu [13]. Further questions on residual transcendental extensions of a valuation have been considered by Ohm, and in the process he stated in [11] three conjectures concerning some natural numbers like ramification index and residual degree. These three problems were later solved in [1]. The main ingredient used in [1] to investigate these and other related questions was a theorem of characterization of residual transcendental extensions of v to $K(X)$. The situation is a lot more complicated if one replaces $K(X)$ by the field $K\left(X_{1}, \ldots, X_{n}\right)$ of rational functions in n variables over K and one attempts to describe all the extensions w of v to $K\left(X_{1}, \ldots, X_{n}\right)$ for which the residue field k_{w} of w has transcendence degree n over the residue field k_{v} of v. One could of course use the characterization theorem from [1] mentioned above in order to describe the valuation w on $K\left(X_{1}, \ldots, X_{n}\right)$ in n steps, by taking a residual transcendental extension of v to $K\left(X_{1}\right)$, followed
by a residual transcendental extension of this valuation to $K\left(X_{1}, X_{2}\right)$, followed by a residual transcendental extension from $K\left(X_{1}, X_{2}\right)$ to $K\left(X_{1}, X_{2}, X_{3}\right)$, and so on, until one obtains the valuation w on $K\left(X_{1}, \ldots, X_{n}\right)$. This description however is not satisfactory for the following reason. In the characterization theorem from [1] one expresses various important aspects of the behavior of the valuation w in terms of a so called minimal pair of definition. Now, in order to successfully apply this theorem in practice one needs some sort of knowledge of these minimal pairs of definition. If we assume that one knows well enough the given valuation v on K, and a fixed extension \bar{v} of v to a fixed algebraic closure \bar{K} of K, then we have a pretty good knowledge of minimal pairs over K with respect to \bar{v}. See for example further developments of the subject in the case of a local field, in [15], [7], [16], [4], [5], [6], [12]. Returning to the general problem concerned with the description of the extension w of the valuation v to $K\left(X_{1}, \ldots, X_{n}\right)$, the first step in this extension, namely from K to $K\left(X_{1}\right)$ is well understood, by the theory from [1] mentioned above. But the next steps, from $K\left(X_{1}\right)$ to $K\left(X_{1}, X_{2}\right)$, from $K\left(X_{1}, X_{2}\right)$ to $K\left(X_{1}, X_{2}, X_{3}\right)$, and so on, are not well understood, because of our lack of knowledge of minimal pairs over the intermediate fields $K\left(X_{1}\right), K\left(X_{1}, X_{2}\right), \ldots, K\left(X_{1}, \ldots, X_{n-1}\right)$ which would appear in such a description of the valuation w. There are however some meaningful things one can say in this full generality. We consider below a fundamental inequality obtained by Ohm [11], which was also proved in [1] as a consequence of the characterization theorem for residual transcendental extensions of a valuation v from K to $K(X)$, and we discuss an analogue of this inequality in the case when $K(X)$ is replaced by a field of rational functions over K in several variables.

2.The case $n=1$

As was mentioned in the introduction, this case is better understood than the case of a general n.

Let K be a field and v a valuation on K. Denote by k_{v}, Γ_{v} and O_{v} the residue field, the value group and the valuation ring of v respectively. If x is in O_{v} we denote by x^{*} the canonical image of x in k_{v}.

Let w be an extension of v to the field $K(X)$ of rational functions in one variable over K, and denote by k_{w}, Γ_{w} and O_{w} the residue field, the value group and the valuation ring of w respectively. We shall canonically identify k_{v} with a subfield of k_{w} and Γ_{v} with a subgroup of Γ_{w}.

The valuation w on $K(X)$ is said to be a residual transcendental extension of v provided that k_{w} is a transcendental extension of k_{v}. In this case the transcendence degree of k_{w} over k_{v} equals 1 .

Nagata's conjecture mentioned in the introduction, proved by Ohm and Popescu, states that if w is a residual transcendental extension of v to $K(X)$, then k_{w} is a simple transcendental extension of a finite algebraic extension of k_{v}.

For the remaining part of this section we will assume that w is a residual transcendental extension of v to $K(X)$. It is then easy to see that Γ_{v} is a subgroup of finite index in Γ_{w}. We denote this index by $e(w / v)$.

Let k be the algebraic closure of k_{v} in k_{w}. It is easy to see that k is a finite extension of k_{v}. We denote the degree of this extension by $f(w / v)$.

Since w is a residual transcendental extension of v, there are elements r of O_{w} for which r^{*} is transcendental over k_{v}. We denote by $\operatorname{deg}(w / v)$ the smallest positive integer d for which there exists an element r in O_{w} such that $[K(X): K(r)]=d$ and r^{*} is transcendental over k_{v}.

As was proved by Ohm, the natural numbers $e(w / v), f(w / v)$ and $\operatorname{deg}(w / v)$ satisfy the fundamental inequality

$$
e(w / v) f(w / v) \leq \operatorname{deg}(w / v)
$$

This holds true for any residual transcendental extension w of v to $K(X)$. There are cases when we have equality,

$$
e(w / v) f(w / v)=\operatorname{deg}(w / v) .
$$

As was shown in [1], three situations when the above equality holds true, are the following:

1) v Henselian and char $k_{v}=0$;
2) v of rank one and char $k_{v}=0$;
3) v of rank one and discrete.

This answers three conjectures raised by Ohm. The main tool used in [1] to investigate these and other, related problems is a theorem of characterization of residual transcendental extensions of v to $K(X)$. Before we state the theorem we need to introduce some more notation and terminology.

Let \bar{K} be a fixed algebraic closure of K, and let \bar{v} be a fixed extension of v to \bar{K}. If w is an extension of v to $K(X)$, then there exists an extension \bar{w} of w to $\bar{K}(X)$ such that \bar{w} is also an extension of \bar{v}. If w is a residual transcendental
extension of v to $K(X)$, then \bar{w} is a residual transcendental extension of \bar{v} to $\bar{K}(X)$. One shows in this case that there exists a pair (α, δ), with $\alpha \in \bar{K}$ and $\delta \in \Gamma_{\bar{v}}$ such that \bar{w} is the valuation on $\bar{K}(X)$ defined by inf, \bar{v}, α and δ. By this one means that for any polynomial $F(X)$ in $\bar{K}[X]$, if one uses Taylor's expansion to write $F(X)$ in the form

$$
F(X)=c_{0}+c_{1}(X-\alpha)+\cdots+c_{m}(X-\alpha)^{m}
$$

then one has

$$
\bar{w}(F(X))=\inf _{i}\left\{\bar{v}\left(c_{i}\right)+i \delta\right\} .
$$

Next, for any rational function $R(X)=F(X) / G(X)$, with $F(X), G(X)$ in $\bar{K}[X]$, one has

$$
\bar{w}(R(X))=\bar{w}(F(X))-\bar{w}(G(X)) .
$$

Therefore, with \bar{v} fixed, \bar{w} is uniquely determined by the pair (α, δ), which is then called a pair of definition for \bar{w}. One shows that two pairs $\left(\alpha_{1}, \delta_{1}\right)$ and $\left(\alpha_{2}, \delta_{2}\right)$ define the same valuation \bar{w} if and only if $\delta_{1}=\delta_{2}$ and $\bar{v}\left(\alpha_{1}-\alpha_{2}\right) \geq \delta_{1}$.

By a minimal pair of definition for \bar{w} with respect to K one means a pair of definition (α, δ) for \bar{w}, for which the degree of α over K is minimal.

Thus for every residual transcendental extension w of v to $K(X)$, there is a minimal pair of definition for \bar{w}, and, if (α, δ) and $\left(\alpha^{\prime}, \delta\right)$ are two minimal pairs, then $[K(\alpha): K]=\left[K\left(\alpha^{\prime}\right): K\right]$.

For any α in \bar{K} and any γ in $\Gamma_{\bar{v}}$ let us denote by $e(\gamma, K(\alpha))$ the smallest positive integer e for which $e \gamma$ belongs to the value group $\Gamma_{K(\alpha)}$ of the restriction of \bar{v} to $K(\alpha)$.

We can now state the following theorem of characterization of residual transcendental extensions of v to $K(X)$ from [1].

Theorem 1. Let v be a valuation on a field K and let w be a residual transcendental extension of v to $K(X)$. Let $\alpha \in \bar{K}$ and $\delta \in \Gamma_{\bar{v}}$ such that (α, δ) is a minimal pair of definition for \bar{w} with respect to K. Then:
(a) If we denote $[K(\alpha): K]=n$, then for every polynomial $g(X)$ in $K[X]$ such that $\operatorname{deg} g(X)<n$, one has

$$
w(g(X))=\bar{v}(g(\alpha))
$$

(b) For the monic minimal polynomial $f(X)$ of α over K, let $\gamma=w(f(X))$ and $e=e(\gamma, K(\alpha))$. Then there exists $l(X)$ in $K[X]$ with $\operatorname{deg} l<n$ such that for $r=f^{e} / l$ one has $w(r)=0$, and r^{*} is transcendental over k_{v}.
(c) If v_{1} denotes the restriction of \bar{v} to $K(\alpha)$, then

$$
\operatorname{deg}(w / v)=n e, \quad e(w / v)=e\left(v_{1} / v\right) e
$$

(d) The field $k_{v_{1}}$ can be canonically identified with the algebraic closure of k_{v} in k_{w}, and

$$
f(w / v)=f\left(v_{1} / v\right) .
$$

3.The case of a general n

Let K be a field and v a valuation on K. As in the previous section we denote by k_{v}, Γ_{v} and O_{v} the residue field, the value group and the valuation ring of v respectively.

Let w be an extension of v to the field $K\left(X_{1}, \ldots, X_{n}\right)$ of rational functions in n variables X_{1}, \ldots, X_{n} over K. Denote by k_{w}, Γ_{w} and O_{w} the residue field, the value group and respectively the valuation ring of w.

We shall canonically identify k_{v} with a subfield of k_{w} and Γ_{v} with a subgroup of Γ_{w}. For any x in O_{w} we denote by x^{*} the canonical image of x in k_{w}. In what follows we will only work with extensions w of v to $K\left(X_{1}, \ldots, X_{n}\right)$ for which the transcendence degree of k_{w} over k_{v} equals n.

As we shall see below, in this case Γ_{v} will be a subgroup of finite index in Γ_{w}, and we denote this index by $e(w / v)$.

Let k be the algebraic closure of k_{v} in k_{w}. Then k is a finite extension of k_{v}, and we denote the degree of this extension by $f(w / v)$.

By analogy with the definition of $\operatorname{deg}(w / v)$ from the previous section, we now denote by $\operatorname{deg}(w / v)$ the smallest positive integer d for which there exist elements r_{1}, \ldots, r_{n} in O_{w} such that $\left[K\left(X_{1}, \ldots, X_{n}\right): K\left(r_{1}, \ldots, r_{n}\right)\right]=d$ and $r_{1}^{*}, \ldots, r_{n}^{*}$ are algebraically independent over k_{v}.

Then we have the following analogue of the fundamental inequality from the previous section involving the natural numbers $e(w / v), f(w / v)$ and $\operatorname{deg}(w / v)$.

Theorem 2. Let K be a field and v a valuation on K. Let w be an extension of v to $K\left(X_{1}, \ldots, X_{n}\right)$ such that the residue field k_{w} of w has transcendence degree n over the residue field k_{v} of v. Then

$$
\operatorname{deg}(w / v) \geq e(w / v) f(w / v)
$$

Proof. Let K be a field, v a valuation on K, and w an extension of v to $K\left(X_{1}, \ldots, X_{n}\right)$ such that the residue field k_{w} of w has transcendence degree n over the residue field k_{v} of v. Choose r_{1}, \ldots, r_{n} such that

$$
\left[K\left(X_{1}, \ldots, X_{n}\right): K\left(r_{1}, \ldots, r_{n}\right)\right]=\operatorname{deg}(w / v)
$$

and such that $r_{1}^{*}, \ldots, r_{n}^{*}$ are algebraically independent over k_{v}. Denote by k the algebraic closure of k_{v} in k_{w}. Next, choose elements u_{1}, \ldots, u_{m} in O_{w} such that their images $u_{1}^{*}, \ldots, u_{m}^{*}$ in k_{w} belong to k and are linearly independent over k_{v}. We also choose v_{1}, \ldots, v_{s} in O_{w} such that the elements $w\left(v_{1}\right), \ldots, w\left(v_{s}\right)$ of Γ_{w} belong to distinct cosets of Γ_{w} modulo Γ_{v}, in other words the images of $w\left(v_{1}\right), \ldots, w\left(v_{s}\right)$ in the quotient group Γ_{w} / Γ_{v} are distinct. Let now S be a sum of the form

$$
S=\sum_{\substack{1 \leq i \leq s \\ 1 \leq j \leq m}} c_{i j} v_{i} u_{j},
$$

with $c_{i j}$ in $K\left(r_{1}, \ldots, r_{n}\right)$, for $1 \leq i \leq s$ and $1 \leq j \leq m$. We claim that for any such sum S one has

$$
w(S)=\min _{\substack{1 \leq \leq s \\ 1 \leq j \leq m}} w\left(c_{i j} v_{i} u_{j}\right)
$$

Indeed, let us denote

$$
\gamma=\min _{\substack{1 \leq i \leq s \\ 1 \leq j \leq m}} w\left(c_{i j} v_{i} u_{j}\right) .
$$

We write S in the form

$$
S=S_{1}+S_{2}
$$

where in S_{1} we collect all the terms $c_{i j} v_{i} u_{j}$ with $w\left(c_{i j} v_{i} u_{j}\right)=\gamma$, and in S_{2} we put all the terms $c_{i j} v_{i} u_{j}$ for which $w\left(c_{i j} v_{i} u_{j}\right)>\gamma$. Then $w\left(S_{2}\right)>\gamma$, so clearly the claim will be proved if we show that $w\left(S_{1}\right)=\gamma$.

At this point we note that $w\left(c_{i j}\right)$ belongs to Γ_{v} for any $1 \leq i \leq s$ and any $1 \leq j \leq m$. For, fix i, j and write $c_{i j}$ as a quotient of two polynomials in r_{1}, \ldots, r_{n} with coefficients in O_{v}, say

$$
c_{i j}=\frac{P\left(r_{1}, \ldots, r_{n}\right)}{Q\left(r_{1}, \ldots, r_{n}\right)}
$$

with $P\left(r_{1}, \ldots, r_{n}\right), Q\left(r_{1}, \ldots, r_{n}\right)$ in $O_{v}\left[r_{1}, \ldots, r_{n}\right]$. If $w\left(c_{i j}\right)$ does not belong to Γ_{v}, then at least one of $w\left(P\left(r_{1}, \ldots, r_{n}\right)\right)$ or $w\left(Q\left(r_{1}, \ldots, r_{n}\right)\right)$ does not belong to Γ_{v}. Say $w\left(P\left(r_{1}, \ldots, r_{n}\right)\right) \notin \Gamma_{v}$.

Let $b \in O_{v}$ be one of the coefficients of the polynomial $P\left(r_{1}, \ldots, r_{n}\right)$ for which $v(b)$ is minimal. Then $P\left(r_{1}, \ldots, r_{n}\right) / b$ is a polynomial in r_{1}, \ldots, r_{n} with coefficients in O_{v}, and at least one of these coefficients is a unit. Then the image of $P\left(r_{1}, \ldots, r_{n}\right) / b$ in k_{w} will be a polynomial in $r_{1}^{*}, \ldots, r_{n}^{*}$ with coefficients in k_{v}, and not all these coefficients vanish in k_{v}. Since $r_{1}^{*}, \ldots, r_{n}^{*}$ are algebraically independent over k_{v}, it follows that the image of $P\left(r_{1}, \ldots, r_{n}\right) / b$ in k_{w} is not the zero element of k_{w}. Therefore

$$
w\left(P\left(r_{1}, \ldots, r_{n}\right) / b\right)=0,
$$

which implies that

$$
w\left(P\left(r_{1}, \ldots, r_{n}\right)\right)=w(b)=v(b) \in \Gamma_{v}
$$

contrary to our assumption that $w\left(P\left(r_{1}, \ldots, r_{n}\right)\right)$ does not belong to Γ_{v}. We conclude that all the elements $w\left(c_{i j}\right)$ of Γ_{w} belong to Γ_{v}. Note also that since $u_{1}^{*}, \ldots, u_{m}^{*}$ are nonzero elements of k, we have $w\left(u_{j}\right)=0$ for any $1 \leq j \leq m$.

We deduce that for any $1 \leq i \leq s$ and any $1 \leq j \leq m$, the image of $w\left(c_{i j} v_{i} u_{j}\right)$ in Γ_{w} / Γ_{v} coincides with the image of $w\left(v_{i}\right)$ in Γ_{w} / Γ_{v}. For terms belonging to S_{1}, this image further coincides with the image of γ in Γ_{w} / Γ_{v}. It follows that all the terms $c_{i j} v_{i} u_{j}$ which appear in S_{1} correspond to the same value of i, call it i_{0}, which is uniquely determined such that $w\left(v_{i_{0}}\right)$ and γ have the same image in Γ_{w} / Γ_{v}.

Therefore S_{1} has the form

$$
S_{1}=\sum_{j \in J} c_{i_{0} j} v_{i_{0}} u_{j}
$$

for some nonempty subset J of the set $\{1, \ldots, m\}$. Here

$$
w\left(c_{i_{0} j}\right)=\gamma-w\left(v_{i_{0}}\right)-w\left(u_{j}\right)=\gamma-w\left(v_{i_{0}}\right)
$$

for any j in J. Fix now an element j_{0} in J. Then the required equality $w\left(S_{1}\right)=\gamma$ will follow if we prove that

$$
w\left(\sum_{j \in J} c_{i_{0} j} u_{j}\right)=w\left(c_{i_{0} j_{0}}\right) .
$$

This is equivalent to

$$
w\left(\sum_{j \in J} a_{j} u_{j}\right)=0
$$

where for any j in $J, a_{j}=c_{i_{0} j} / c_{i_{0} j_{0}}$ is an element of $K\left(r_{1}, \ldots, r_{n}\right)$ for which $w\left(a_{j}\right)=0$. Let us assume that

$$
w\left(\sum_{j \in J} a_{j} u_{j}\right)>0 .
$$

Then one has

$$
\sum_{j \in J} a_{j}^{*} u_{j}^{*}=0
$$

in k_{w}. Here each a_{j}^{*} is a rational function of $r_{1}^{*}, \ldots, r_{n}^{*}$ with coefficients in k_{v}, and each u_{j}^{*} belongs to k. Multiplying the above equality by a suitable element of $k_{v}\left[r_{1}^{*}, \ldots, r_{n}^{*}\right]$ we obtain an equality of the form

$$
\sum_{j \in J} F_{j}\left(r_{1}^{*}, \ldots, r_{n}^{*}\right) u_{j}^{*}=0
$$

where each $F_{j}\left(r_{1}^{*}, \ldots, r_{n}^{*}\right)$ belongs to $k_{v}\left[r_{1}^{*}, \ldots, r_{n}^{*}\right]$. Since $r_{1}^{*}, \ldots, r_{n}^{*}$ are algebraically independent over k_{v}, and therefore also over k, it follows that in the above equality the corresponding coefficients to any given monomial in $r_{1}^{*}, \ldots, r_{n}^{*}$ must cancel. This produces nontrivial linear combinations of the u_{j}^{*}, $j \in J$, with coefficients in k_{v}, which vanish, contradicting our assumption that the u_{j}^{*} are linearly independent over k_{v}. This proves our claim that

$$
w(S)=\min _{\substack{1 \leq \leq s \\ 1 \leq j \leq m}} w\left(c_{i j} v_{i} u_{j}\right) .
$$

As a consequence it follows that $S=0$ if and only if all the coefficients $c_{i j}$ are zero. In other words this says that the elements $v_{i} u_{j}, 1 \leq i \leq s, 1 \leq j \leq m$ of $K\left(X_{1}, \ldots, X_{n}\right)$ are linearly independent over the field $K\left(r_{1}, \ldots, r_{n}\right)$.

Let us assume now that at least one of $e(w / v), f(w / v)$ is infinite, or that both are finite and their product is strictly larger than $\operatorname{deg}(w / v)$. Then we can find positive integers m, s such that $m s>\operatorname{deg}(w / v)$ and we can find elements $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{s}$ of O_{w} such that the images $u_{1}^{*}, \ldots, u_{m}^{*}$ of u_{1}, \ldots, u_{m} in k_{w} belong to k and are linearly independent over k_{v}, and the elements $w\left(v_{1}\right), \ldots, w\left(v_{s}\right)$ of Γ_{w} have distinct images in the quotient group Γ_{w} / Γ_{v}. Then we know that the elements $v_{i} u_{j}, 1 \leq i \leq s, 1 \leq j \leq m$ of $K\left(X_{1}, \ldots, X_{n}\right)$ are linearly independent over $K\left(r_{1}, \ldots, r_{n}\right)$. But

$$
\left[K\left(X_{1}, \ldots, X_{n}\right): K\left(r_{1}, \ldots, r_{n}\right)\right]=\operatorname{deg}(w / v)<m s
$$

which implies that the elements $v_{i} u_{j}, 1 \leq i \leq s, 1 \leq j \leq m$ can not be linearly independent over $K\left(r_{1}, \ldots, r_{n}\right)$. The contradiction obtained shows that both $e(w / v)$ and $f(w / v)$ are finite, and

$$
e(w / v) f(w / v) \leq \operatorname{deg}(w / v)
$$

which completes the proof of the theorem.
We now consider the cases when the inequality from the statement of Theorem 2 becomes an equality. We show that in such cases an analogue of Nagata's conjecture holds true.

Theorem 3. Let K be a field and v a valuation on K. Let w be an extension of v to $K\left(X_{1}, \ldots, X_{n}\right)$ such that the residue field k_{w} of w has transcendence degree n over the residue field k_{v} of v. Assume that

$$
\operatorname{deg}(w / v)=e(w / v) f(w / v)
$$

Then k_{w} is isomorphic to the field of rational functions in n variables over a finite extension of k_{v}.

Proof. Let K be a field, v a valuation on K, and w an extension of v to $K\left(X_{1}, \ldots, X_{n}\right)$ such that the residue field k_{w} of w has transcendence degree n over the residue field k_{v} of v. Choose r_{1}, \ldots, r_{n} such that

$$
\left[K\left(X_{1}, \ldots, X_{n}\right): K\left(r_{1}, \ldots, r_{n}\right)\right]=\operatorname{deg}(w / v)
$$

and such that $r_{1}^{*}, \ldots, r_{n}^{*}$ are algebraically independent over k_{v}. Denote by k the algebraic closure of k_{v} in k_{w}. The theorem will be proved if we show that

$$
k_{w}=k\left(r_{1}^{*}, \ldots, r_{n}^{*}\right) .
$$

As in the proof of Theorem 2, choose elements u_{1}, \ldots, u_{m} in O_{w} such that their images $u_{1}^{*}, \ldots, u_{m}^{*}$ in k_{w} belong to k and are linearly independent over k_{v}. Also, choose v_{1}, \ldots, v_{s} in O_{w} such that the elements $w\left(v_{1}\right), \ldots, w\left(v_{s}\right)$ of Γ_{w} have distinct images in the quotient group Γ_{w} / Γ_{v}. Here we take $m=f(w / v)$ and $s=e(w / v)$. Note that then exactly one of the elements $w\left(v_{1}\right), \ldots, w\left(v_{s}\right)$, say $w\left(v_{1}\right)$, belongs to Γ_{v}. We may then choose for simplicity $v_{1}=1$. We know from the proof of Theorem 2 that the elements $v_{i} u_{j}, 1 \leq i \leq s, 1 \leq j \leq m$ of $K\left(X_{1}, \ldots, X_{n}\right)$ are linearly independent over $K\left(r_{1}, \ldots, r_{n}\right)$. Since their number is $m s=e(w / v) f(w / v)$, which by the assumption from the statement of the theorem equals $\operatorname{deg}(w / v)$, which further equals the degree of $K\left(X_{1}, \ldots, X_{n}\right)$ over $K\left(r_{1}, \ldots, r_{n}\right)$, it follows that the elements $v_{i} u_{j}, 1 \leq i \leq s, 1 \leq j \leq m$ form a basis of $K\left(X_{1}, \ldots, X_{n}\right)$ over $K\left(r_{1}, \ldots, r_{n}\right)$.

Let us now take any element t of k_{w}, and choose a representative z of t in the valuation ring O_{w}. Express z in terms of the above basis, say

$$
z=\sum_{\substack{1 \leq i \leq s \\ 1 \leq j \leq m}} c_{i j} v_{i} u_{j}
$$

with $c_{i j}$ in $K\left(r_{1}, \ldots, r_{n}\right)$, for $1 \leq i \leq s$ and $1 \leq j \leq m$. We know from the proof of Theorem 2 that

$$
w(z)=\min _{\substack{1 \leq \leq \leq s \\ 1 \leq j \leq m}} w\left(c_{i j} v_{i} u_{j}\right) .
$$

We write $z=S_{1}+S_{2}$, where S_{1} and S_{2} have the same meaning as in the proof of Theorem 2. Then we know that

$$
S_{1}=\sum_{j \in J} c_{i_{0} j} v_{i_{0}} u_{j}
$$

for some integer i_{0} in $\{1, \ldots, s\}$ and some subset J of $\{1, \ldots, m\}$. Since $w\left(S_{1}\right)=w(z)=0$, this forces $i_{0}=1, v_{i_{0}}=v_{1}=1$, hence

$$
S_{1}=\sum_{j \in J} c_{1 j} u_{j} .
$$

On the other hand we know that

$$
w\left(z-S_{1}\right)=w\left(S_{2}\right)>w(z)=0
$$

therefore the image of S_{1} in the residue field k_{w} coincides with the image of z in k_{w}, that is, it coincides with t. We also know that $w\left(c_{1 j}\right)$ has the same value for any j in J. In our case this value is zero, so each $c_{1 j}$ is an element of $K\left(r_{1}, \ldots, r_{n}\right)$ which also belongs to O_{w}.

Lastly, by taking the image of S_{1} in the residue field k_{w}, we find that

$$
t=S_{1}^{*}=\sum_{j \in J} c_{1 j}^{*} u_{j}^{*}
$$

Here each $c_{1 j}^{*}$ belongs to $k_{v}\left(r_{1}^{*}, \ldots, r_{n}^{*}\right)$, and each u_{j}^{*} belongs to k. It follows that t belongs to $k\left(r_{1}^{*}, \ldots, r_{n}^{*}\right)$. Since t was an arbitrary element of k_{w}, we conclude that

$$
k_{w}=k\left(r_{1}^{*}, \ldots, r_{n}^{*}\right),
$$

which completes the proof of the theorem.

References

[1] V. Alexandru, N. Popescu, A. Zaharescu, A theorem of characterization of residual transcendental extensions of a valuation, J. Math. Kyoto Univ. 28 (1988), no. 4, 579-592.
[2] V. Alexandru, N. Popescu, A. Zaharescu, Minimal pairs of definition of a residual transcendental extension of a valuation, J. Math. Kyoto Univ. 30 (1990), no. 2, 207-225.
[3] V. Alexandru, N. Popescu, A. Zaharescu, All valuations on $K(X)$, J. Math. Kyoto Univ. 30 (1990), no. 2, 281-296.
[4] V. Alexandru, N. Popescu, A. Zaharescu, On the closed subfields of C_{p}, J. Number Theory 68 (1998), no. 2, 131-150.
[5] V. Alexandru, N. Popescu, A. Zaharescu, The generating degree of C_{p}, Canad. Math. Bull. 44 (2001), no. 1, 3-11.
[6] V. Alexandru, N. Popescu, A. Zaharescu, Trace on C_{p}, J. Number Theory 88 (2001), no. 1, 13-48.
[7] A. Ioviţă, A. Zaharescu, Completions of r.a.t.-valued fields of rational functions, J. Number Theory 50 (1995), no. 2, 202-205.
[8] M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85-91.
[9] J. Ohm, Simple transcendental extensions of valued fields, J. Math. Kyoto Univ. 22 (1982), 201-221.
[10] J. Ohm, The ruled residue theorem for simple transcendental extensions of valued fields, Proc. Amer. Math. Soc. 89 (1983), 16-18.
[11] J. Ohm, Simple transcendental extensions of valued fields. II: A fundamental inequality, J. Math. Kyoto Univ. 25 (1985), 583-596.
[12] A. Popescu, N. Popescu, M. Vâjâitu, A. Zaharescu, Chains of metric invariants over a local field, Acta Arith. 103 (2002), no. 1, 27-40.
[13] N. Popescu, On a problem of Nagata in valuation theory, Rev. Roumaine Math. Pures Appl. 31 (1986), 639-641.
[14] N. Popescu, A. Zaharescu, On a class of valuations on $K(X)$, XIth National Conference of Algebra (Constanţa, 1994). An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 2 (1994), 120-136.
[15] N. Popescu, A. Zaharescu, On the structure of the irreducible polynomials over local fields, J. Number Theory 52 (1995), no. 1, 98-118.
[16] N. Popescu, A. Zaharescu, On the main invariant of an element over a local field, Portugal. Math. 54 (1997), no. 1, 73-83.

A. Zaharescu:

Department of Mathematics
University of Illinois at Urbana-Champaign
1409 W. Green Street
Urbana, IL, 61801, USA
email:zaharesc@math.uiuc.edu

