METRIC SUBGROUPS OF ISOMETRIES ON AN ULTRAMETRIC SPACE

Alexandru Zaharescu

ABSTRACT. Let E be an ultrametric space, d the distance on E and G a group of bijective maps $\psi : E \to E$ which are isometries. We investigate properties of those subgroups H of G which are defined in terms of metric constraints, of the form

$$H = \{\psi \in G : d(x, \psi(x)) \le f(x), \ x \in E\}$$

for some function $f: E \to [0, \infty]$.

2000 Mathematics Subject Classification: 11S99.

1.INTRODUCTION

Let E be an ultrametric space, that is a metric space on which the distance d satisfies the triangle inequality in the stronger form

$$d(x,z) \le \max\{d(x,y), \ d(y,z)\}$$

for any $x, y, z \in E$. We denote by \mathcal{F}_E the set of maps $f : E \to [0, \infty]$ and by \mathcal{G} the group of bijective maps $\psi : E \to E$ which are isometries,

$$d(\psi(x), \psi(y)) = d(x, y)$$

for any $x, y \in E$. We say that a subgroup H of \mathcal{G} is a metric subgroup provided that

$$H = \{ \psi \in \mathcal{G} : d(x, \psi(x)) \le f(x), \ x \in E \}$$

for some $f \in \mathcal{F}_E$. More generally, if G is a subgroup of \mathcal{G} , and H is a subgroup of G, we say that H is a metric subgroup of G if there exists a function $f \in \mathcal{F}_E$ such that

$$H = \{ \psi \in G : d(x, \psi(x)) \le f(x), \ x \in E \}.$$

In this definition G itself does not have to be a metric subgroup of \mathcal{G} , we only ask that H be defined inside G by metric constraints as above. So we may have situations when a subgroup H of \mathcal{G} which is also a subgroup of G, fails to be a metric subgroup of \mathcal{G} while at the same time H is a metric subgroup of G.

Various properties of groups of isometries on an ultrametric space have been investigated in [9], [10] and [11]. The starting point was the observation that, unlike in the case of a general metric space, if E is an ultrametric space then for any $f \in \mathcal{F}_E$ the set

$$\mathcal{G}(f) = \{ \psi \in \mathcal{G} : d(x, \psi(x)) \le f(x), \ x \in E \}$$

is a subgroup of \mathcal{G} . The motivation for considering these notions came from the theory of local fields (for a general presentation see [4] or [7]). If p is a prime number and $E = \mathbf{C}_{\mathbf{p}}$ is the completion of the algebraic closure $\overline{\mathbf{Q}}_p$ of the field of p-adic numbers $\overline{\mathbf{Q}}_p$, then E is an ultrametric space and any automorphism $\sigma \in \operatorname{Gal}_{\operatorname{cont}}(E/\mathbf{Q}_p) \cong \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ is an isometry. Some important groups of automorphisms, such as the ramification groups, can naturally be interpreted in the above metric framework. Also, by Galois theory in \mathbf{C}_p , as developed in [3], [6],[8], each closed subgroup H of $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ corresponds to a closed subfield L of \mathbf{C}_p , given by

$$L = \{ x \in \mathbf{C}_{\mathbf{p}} : \sigma(\mathbf{x}) = \mathbf{x}, \ \sigma \in \mathbf{H} \}.$$

We see that

$$H = \{ \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p) : \ d(x, \sigma(x)) \le f(x), \ x \in E \}$$

with

$$f(x) = \begin{cases} 0 & \text{if } x \in L \\ \infty & \text{if } x \in E \setminus L \end{cases}$$

Thus, with the above definition, H is a metric subgroup of

 $G = \text{Gal}_{\text{cont}}(\mathbf{C}_{\mathbf{p}}/\mathbf{Q}_{\mathbf{p}})$. Clearly one can define the same subgroup H with the aid of other functions from \mathcal{F}_E . If we choose for instance a generating element

T of L (see [5],[1],[2]), that is an element $T \in L$ for which $\mathbf{Q}_{\mathbf{p}}[\mathbf{T}]$ is dense in L, then we may replace the above f by

$$g(x) = \begin{cases} 0 & \text{if } x = T \\ \infty & \text{if } x \neq T \end{cases}$$

without changing the group H. In the present paper we work with a general ultrametric space E, a subgroup G of \mathcal{G} , and we discuss some properties of metric subgroups H of G.

2. Groups of isometries and m.l.c. functions

The notion of metric locally constant function (m.l.c. for short) was introduced in [9], in order to investigate certain groups of isometries on a given ultrametric space, and was subsequently studied also in [10] and [11]. In this section we collect some results from [9] concerned with metric locally constant functions and the corresponding groups of isometries.

Let E be an ultrametric space, d the distance on E and $\mathcal{F}_E = \{f : E \to [0,\infty]\}$. For any $x \in E$ and r > 0 we denote by B(x,r) the open ball of radius r centered at x. A function $f \in \mathcal{F}_E$ is said to be *metric locally constant* provided that for any $x \in E$ and any $y \in B(x, f(x))$ one has f(y) = f(x). We denote by $\tilde{\mathcal{F}}_E$ the set of m.l.c. functions.

Let $f \in \mathcal{F}_E$. Then:

(i) f is constant equal to ∞ or $Im f \subseteq [0, \infty)$.

(ii) f is locally constant on the open set $E \setminus f^{-1}(0)$.

(iii) If $f(x_0) = 0$ then $f(x) \le d(x, x_0)$ for any $x \in E$.

(iv) f is continuous.

For any $z \in E$ denote by d_z the function given by $d_z(x) = d(x, z)$ for any $x \in E$.

THEOREM 1. $\tilde{\mathcal{F}}_E$ contains the constant functions, the d_z 's and it is closed under taking inf, sup and under scalar multiplication with numbers $c \in [0, 1]$.

COROLLARY 1. For any subset A of E, the function $d_A : E \to [0, \infty)$ given by $d_A(x) = d(x, A) = \inf_{y \in A} d(x, y)$ for any $x \in E$, is m.l.c.

One has the following structure theorem for $\hat{\mathcal{F}}_E$.

THEOREM 2. $\tilde{\mathcal{F}}_E$ coincides with the smallest subset of \mathbf{F}_E which contains the constants, the d_z 's and is closed under taking inf and sup.

Let us define for any $f \in \mathcal{F}_E$ a new element $\tilde{f} \in \mathcal{F}_E$ given by

$$\tilde{f}(x) = \inf_{y \in E} \max\{d(x, y), f(y)\}$$

for any $x \in E$. If we denote by c_t the constant function $c_t(x) = t$, then the above equality can also be written in the form

$$\tilde{f} = \inf_{y \in E} \max\{d_y, c_{f(y)}\}.$$

Some properties of the map which associates \tilde{f} to f are collected in the following result.

THEOREM 3. The map from \mathcal{F}_E to \mathcal{F}_E given by $f \mapsto \tilde{f}$ has the following properties:

(i) If $f \leq g$ then $\tilde{f} \leq \tilde{g}$. (ii) If $\tilde{f} = g$ then $\tilde{g} = g$. (iii) $\tilde{f} \leq f$ for any $f \in \mathcal{F}_E$. (iv) $\tilde{\mathcal{F}}_E = \{\tilde{f} \in \mathcal{F}_E : f \in \mathcal{F}_E\} = \{f \in \mathcal{F}_E : f = \tilde{f}\}.$ (v) If H is a subset of \mathcal{F}_E and $f(x) = \inf_{h \in H} h(x)$ for any $x \in E$, then $\tilde{f}(x) = \inf_{h \in H} \tilde{h}(x)$ for any $x \in E$.

Let \mathcal{G} be the group of bijective maps $\psi: E \to E$ which are isometries. For any $f \in \mathcal{F}_E$ consider the set

$$\mathcal{G}(f) = \{ \psi \in \mathcal{G} : d(x, \psi(x)) \le f(x), x \in E \}.$$

For a general metric space E, $\mathcal{G}(f)$ might or might not be a subgroup of \mathcal{G} . For an ultrametric space E, $\mathcal{G}(f)$ is a subgroup of \mathcal{G} for any $f \in \mathcal{F}_E$.

THEOREM 4. (i) For any $f \in \mathcal{F}_E$, $\mathcal{G}(f)$ is a subgroup of \mathcal{G} . (ii) If $f \leq g$ then $\mathcal{G}(f)$ is a subgroup of $\mathcal{G}(g)$. (iii) For any subset H of \mathcal{F}_E one has $\mathcal{G}(\inf_{h \in H} h) = \bigcap_{h \in H} \mathcal{G}(h)$. (iv) $\mathcal{G}(\tilde{f}) = \mathcal{G}(f)$ for any $f \in \mathcal{F}_E$. (v) If $f, g \in \mathcal{F}_E$ are such that $\tilde{f} \leq g$ and $\tilde{g} \leq f$, then $\mathcal{G}(f) = \mathcal{G}(g)$.

Property (iv), together with the above formulas for \tilde{f} , give an explicit way of deforming a given $f \in \mathcal{F}_E$ (to make it metric locally constant), without changing the group $\mathcal{G}(f)$. Property (v) produces instances when one can conclude that two functions f, g, which might be related in a complicated metric way, produce the same group of isometries.

3. Metric subgroups of isometries

Notations being as in the previous sections, let now G be any subgroup of \mathcal{G} , and let H be a subgroup of G. We say that H is a metric subgroup of G provided that there exists a function $f \in \mathcal{F}_E$ such that

$$H = \{ \psi \in G : d(x, \psi(x)) \le f(x), x \in E \}.$$

We note that not all the groups of isometries on ultrametric spaces are metric subgroups.

Indeed, let us consider the following example. Let E consist of n elements and let the distance d be given by d(x, y) = 1 for any two distinct elements x, yof E. Then any bijective map $\psi : E \to E$ is an isometry, so \mathcal{G} consists of all the permutations of the set E. Fix $f \in \mathcal{F}_E$ and let $\psi \in \mathcal{G}(f)$. For any $x \in E$ for which f(x) < 1, the inequality $d(x, \psi(x)) \leq f(x)$ forces the equality $\psi(x) = x$. For any $x \in E$ with $f(x) \geq 1$, the inequality $d(x, \psi(x)) \leq f(x)$ is automatically satisfied. It follows that $\psi \in \mathcal{G}(f)$ if and only if ψ invariates every element of $f^{-1}([0, 1))$. Therefore in this example the metric subgroups of \mathcal{G} are in oneto-one correspondence with the subsets of E. Namely, for any subset S of Ewe have a metric subgroup of \mathcal{G} , consisting of all the permutations of E which invariate every element of S. Thus in particular the subgroup generated by a cyclic permutation of length $m \geq 3$, $m \leq n$, will not be a metric subgroup of \mathcal{G} .

Returning to the general case, we gather some properties of metric subgroups in the following theorem.

THEOREM 5. Let E be an ultrametric space and denote by \mathcal{G} the group of bijective isometries on E.

(i) If G is a subgroup of \mathcal{G} and $(H_j)_{j\in J}$ is a family of metric subgroups of G, then their intersection $\bigcap_{j\in J}H_j$ is a metric subgroup of G.

(ii) If $H \subseteq F \subseteq G$ are subgroups of \mathcal{G} and H is a metric subgroup of G, then H is a metric subgroup of F.

(iii) If $H \subseteq F \subseteq G$ are subgroups of \mathcal{G} , H is a metric subgroup of F and F is a metric subgroup of G, then H is a metric subgroup of G.

(iv) If G is a subgroup of \mathcal{G} and H is a metric subgroup of G, then for any subgroup F of \mathcal{G} , $H \cap F$ is a metric subgroup of $G \cap F$.

(v) For any subgroup G of \mathcal{G} , and any subgroup H of G, there is a smallest metric subgroup of G which contains H. We denote this subgroup by H_G .

(vi) For any subgroup G of \mathcal{G} , and any subgroups H, F of G, one has

$$(H \cap F)_G \subseteq H_G \cap F_G.$$

(vii) For any subgroup H of \mathcal{G} , and any subgroups F, G of \mathcal{G} which contain H, one has

$$H_{(G\cap F)} = H_G \cap H_F.$$

Proof. (i). Let G be a subgroup of \mathcal{G} . Let $(H_j)_{j\in J}$ be a family of metric subgroups of G and denote their intersection by H. Next, for any $j \in J$ choose a function $f_j \in \mathcal{F}_E$ such that

$$H_j = \{ \psi \in G : d(x, \psi(x)) \le f_j(x), x \in E \}.$$

Define $f \in \mathcal{F}_E$ by

$$f(x) = \inf\{f_j(x) : j \in J\}$$

for any $x \in E$. Then

$$H = \{ \psi \in G : d(x, \psi(x)) \le f_j(x), x \in E, j \in J \}$$
$$= \{ \psi \in G : d(x, \psi(x)) \le f(x), x \in E \},\$$

so H is a metric subgroup of G.

(ii). Let $H \subseteq F \subseteq G$ be subgroups of \mathcal{G} such that H is a metric subgroup of G. Choose a function $f \in \mathcal{F}_E$ for which

$$H = \{ \psi \in G : d(x, \psi(x)) \le f(x), x \in E \}.$$

Then for any $\psi \in H$ and any $x \in E$ we have $d(x, \psi(x)) \leq f(x)$, while for any ψ which belongs to G but not to H, in particular for any ψ which belongs to F but not to H, there exists an element $y \in E$, depending on ψ , for which $d(y, \psi(y)) > f(y)$. It follows that

$$H = \{ \psi \in F : d(x, \psi(x)) \le f(x), x \in E \},\$$

hence H is a metric subgroup of F.

(iii). Let $H \subseteq F \subseteq G$ be subgroups of \mathcal{G} , such that H is a metric subgroup of F, and F is a metric subgroup of G. Choose functions $f, g \in \mathcal{F}_E$ such that

$$H = \{ \psi \in F : d(x, \psi(x)) \le f(x), x \in E \},\$$

and

$$F = \{\psi \in G : d(x, \psi(x)) \le g(x), x \in E\}.$$

Consider the function $h \in \mathcal{F}_E$ given by

$$h(x) = \min\{f(x), g(x)\}$$

for all $x \in E$. Then, on the one hand, for any $\psi \in H$ and any $x \in E$ we have $d(x, \psi(x)) \leq h(x)$ since ψ belongs to both H and F, and on the other hand, if $\psi \in G$ is such that $d(x, \psi(x)) \leq h(x)$ for any $x \in E$, then $\psi \in F$, and further $\psi \in H$. Therefore

$$H = \{ \psi \in G : d(x, \psi(x)) \le h(x), x \in E \},\$$

so H is a metric subgroup of G.

(iv). Let G, F be subgroups of \mathcal{G} , and let H be a metric subgroup of G. Choose a function $f \in \mathcal{F}_E$ such that

$$H = \{ \psi \in G : d(x, \psi(x)) \le f(x), x \in E \}.$$

If ψ is an element of $H \cap F$, then clearly $d(x, \psi(x)) \leq f(x)$ for all $x \in E$. If ψ is an element of $G \cap F$, and ψ satisfies the inequalities $d(x, \psi(x)) \leq f(x)$ for all $x \in E$, then, since ψ belongs to G, it follows that ψ belongs to H, so ψ belongs to $H \cap F$. In conclusion

$$H \cap F = \{ \psi \in G \cap F : d(x, \psi(x)) \le f(x), x \in E \},\$$

which shows that $H \cap F$ is a metric subgroup of $G \cap F$.

(v). Let G be a subgroup of \mathcal{G} , and let H be a subgroup of G. Consider the set \mathcal{H} of all the metric subgroups of G which contain H. Note that G is a metric subgroup of itself, since for instance for the constant function $f(x) = \infty$ for all $x \in E$ we have

$$G = \{ \psi \in G : d(x, \psi(x)) \le f(x), x \in E \}.$$

Thus G belongs to \mathcal{H} , so \mathcal{H} is nonempty. By property (i) above we know that the intersection of all the subgroups of G which belong to \mathcal{H} is also a

metric subgroup of G, so it belongs to \mathcal{H} . Evidently this subgroup is the smallest metric subgroup of G which contains H.

(vi). Let G be a subgroup of \mathcal{G} , and let H, F be subgroups of G. We know that H_G is a metric subgroup of G which contains H, so it contains $H \cap F$. We also know that $(H \cap F)_G$ is the smallest metric subgroup of G which contains $H \cap F$. Hence $(H \cap F)_G$ is a subgroup of H_G . By a similar reasoning it follows that $(H \cap F)_G$ is a subgroup of F_G . Hence

$$(H \cap F)_G \subseteq H_G \cap F_G,$$

which proves (vi).

(vii). Let H be a subgroup of \mathcal{G} , and let F, G be subgroups of \mathcal{G} which contain H. By definition we know that H_G is a metric subgroup of G which contains H. Taking intersections with F, and using property (iv) above, we derive that $H_G \cap F$ is a metric subgroup of $G \cap F$ which contains H. On the other hand, $H_{(G\cap F)}$ is the smallest metric subgroup of $G \cap F$ which contains H. It follows that $H_{(G\cap F)}$ is contained in $H_G \cap F$, so it is contained in H_G . Similarly we find that $H_{(G\cap F)}$ is contained in H_F . Thus

$$H_{(G\cap F)} \subseteq H_G \cap H_F$$

Suppose this inclusion is strict. Then there exists an isometry σ such that σ belongs to both H_G and H_F , and σ does not belong to $H_{(G \cap F)}$. We claim that

$$d(x, \sigma(x)) \le \sup\{d(x, \psi(x)) : \psi \in H\},\$$

for any $x \in E$. Indeed, if this inequality fails for some element $y \in E$, then let us consider the group

$$G(f) = \{ \psi \in G : d(x, \psi(x)) \le f(x), x \in E \},\$$

where $f \in \mathcal{F}_E$ is defined by

$$f(x) = \sup\{d(x, \psi(x)) : \psi \in H\},\$$

for all $x \in E$. Note that σ does not belong to G(f) since $d(y, \psi(y)) > f(y)$. On the other hand G(f) is a metric subgroup of G which contains H. Therefore H_G is contained in G(f), and since σ does not belong to G(f), it would follow

that σ does not belong to H_G , contrary to our assumptions. This proves the claim.

Let now $h \in \mathcal{F}_E$ be a function for which

$$H_{(G\cap F)} = \{ \psi \in G \cap F : d(x, \psi(x)) \le h(x), x \in E \}.$$

Then we have

$$f(x) = \sup\{d(x, \psi(x)) : \psi \in H\} \le h(x)$$

for any $x \in E$, and from the above claim it follows that $d(x, \sigma(x)) \leq f(x) \leq h(x)$ for all $x \in E$. This in turn implies that $\sigma \in H_{(G \cap F)}$, contrary to our assumptions on σ . In conclusion we have the equality

$$H_{(G\cap F)} = H_G \cap H_F,$$

and this completes the proof of the theorem.

References

[1] V. Alexandru, N. Popescu, A. Zaharescu, On the closed subfields of C_p , J. Number Theory **68** (1998), no. 2, 131–150.

[2] V. Alexandru, N. Popescu, A. Zaharescu, The generating degree of C_p , Canad. Math. Bull. **44** (2001), no. 1, 3–11.

[3] J. Ax, Zeros of Polynomials Over Local Fields. The Galois Action, J. Algebra 15 (1970), 417–428.

[4] Z.I. Borevich, I.R. Shafarevich, *Number theory*. Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20 Academic Press, New York-London 1966.

[5] A. Ioviță, A. Zaharescu, *Completions of r.a.t.-valued fields of rational functions*, J. Number Theory **50** (1995), no. 2, 202–205.

[5] S. Sen, On Automorphisms of local fields, Ann. of Math. (2) **90** (1969), 33–46.

[6] J.-P. Serre, *Local fields*, Translated from the French by Marvin Jay Greenberg. Graduate Texts in Mathematics, 67. Springer-Verlag, New York-Berlin, 1979.

[7] J. T. Tate, p-divisible groups, 1967 Proc. Conf. Local Fields (Driebergen, 1966) 158–183 Springer, Berlin.

[8] M. Vajaitu, A. Zaharescu, *Groups of isometries on ultrametric spaces*, Bull. Math. Soc. Sci. Math. Roumanie, 44 (92), no. 2, 2001, 183–191.

[9] M. Vajaitu, A. Zaharescu, *Galois groups with metric constraints*, Bull. Math. Soc. Sci. Math. Roumanie, 44 (92), no. 3, 2001, 211–219.

[10] M. Vajaitu, A. Zaharescu, *Metric locally constant functions*, Acta Comment. Univ. Tartu. Math. **6** (2002), 29–36.

A. Zaharescu: Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, IL, 61801, USA email:*zaharesc@math.uiuc.edu*