
ACTA UNIVERSITATIS APULENSIS No 11/2006

Proceedings of the International Conference on Theory and Application of
Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

FAR FROM EQUILIBRIUM COMPUTATION AND PARTICLE
SWARM OPTIMIZATION

Laura Dioşan, Dumitru Dumitrescu, Delia David

Abstract. A new model for far from equilibrium computation is pro-
posed in this paper. The model is based on classic Particle Swarm Optimiza-
tion paradigm, but it is developed according to self-organization of far from
equilibrium systems. A stimulus is introduced and particles movement is in-
fluenced both by neighboring particles and by external factors. Numerical
experiments show that the proposed model performs similarly or sometimes
even better than standard PSO approaches for several well-known problems.

2000 Mathematics Subject Classification: 68T05, 37F05.

1. Introduction

The theory of self-organization has been approached in a variety of dis-
ciplines: thermodynamics, cybernetics and computer modeling. In [1, 5]
self-organization is defined as the spontaneous creation of a globally coher-
ent pattern out of local interactions. Because of its distributive character,
this organization tends to be robust and resisting against perturbations. The
dynamics of a self-organizing system is typically non-linear, because of circu-
lar (or feedback) relations between the components. Positive feedback leads
to an explosive growth, which ends when all components have been absorbed
into the new configuration, leaving the system in a stable, negative feedback
state. Non-linear systems have in general several stable states, and this num-
ber tends to increase (bifurcate) as an increasing input of energy pushes the
system further from its thermodynamic equilibrium.

339

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

2. Self organization using PSO model

Particle Swarm Optimization (PSO) is a population based stochastic opti-
mization technique developed by Kennedy and Eberhart in 1995 [6]. The PSO
consists of a set of particles that represent candidate solutions for the problem.
Each particle consists of a point in the search space (xi), an associated velocity
along each dimension (vi), a memory of the best solution encountered by the
particle so far (pbest), and knowledge of the best performing particle in the
neighborhood during the current iteration (nbest or gbest). In each iteration
a particle flies (or hops) through the search space, its trajectory is determined
by its velocity, the attraction to pbest, and the attraction to nbest.

Standard model of PSO implies that particles are updated synchronously
[6]. This means that the current position and speed for a particle is computed
taken into account only information from the previous generation of particles.
A more general model allows updating any particle anytime. This basically
means two things:

• The current state of the swarm is taken into account when a particle
is updated. The best global and local values are computed for each
particle which is about to be updated, because the previous modifications
could affect these two values. This is different from the standard PSO
algorithm where the particles were updated taken into account only the
information from the previous generation. Modifications performed so
far (by a standard PSO) in the current generation had no influence over
the modifications performed further in the current generation.

• We will work with only one swarm. Any updated particle will replace
its parent. Note that two populations/swarms are used in the standard
PSO and the current swarm is filled taken into account the information
from previous generation.

Our purpose is to establish a parallel between a PSO system and a FFE
system. This means that some parameters of PSO algorithm can play the role
of an external factor which holds (keeps) the system out-of-equilibrium. Un-
fortunately, unlike the case for equilibrium systems, there is no well-developed
formalism for studying out-of-equilibrium systems. Nevertheless one can iden-
tify some principles and resort to computer simulations of models to test ideas.

The paper is structured as follows: section 3 discusses work related to the
PSO. Section 4 describes, in detail, the proposed model. Several numerical

340

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

experiments are performed in section 5. Conclusions and further work are
given in section 6.

3. Related Work

Several attempts for PSO using similar techniques were made in the past.
A. J. Carlisle, in [3] presents two update methods: synchronous and asyn-

chronous update. There is a difference in the two methods beyond the obvious.
In the synchronous update, all particles have moved in parallel before the best
selection is made, but in the asynchronous update, the neighbors on one side of
the particle to be adjusted have already been updated, whereas the neighbors
on the other side have not. His conclusion was that asynchronous updates are
generally less costly.

In [12] a dissipative particle swarm optimization is developed according to
the self-organization of dissipative structure. The negative entropy is intro-
duced to construct an opening dissipative system that is far-from-equilibrium
so as to drive the irreversible evolution process with better fitness.

Note that this approach implies that particles are updated synchronously:
the current position and speed for a particle is computed taken into account
only information from the previous generation. Our approach is quite different.
The model proposed in this paper allows updating any particle anytime. The
current state of the swarm is taken into account when a particle is updated.

Our approach is a new technique that proposes a new type of PSO al-
gorithm and that improves the similarities between PSO and FFE systems.
Numerical experiments show that the FFEPSO technique performs similarly
and sometimes even better than dissipative approaches for several well-known
benchmarking problems.

4. Proposed model

The proposed model for FFECPSO algorithm is described in this section.
We study the possibility of developing far-from-equilibrium computational sys-
tems, in analogy with corresponding self-organizing systems. The evolution
towards equilibrium of some systems can be interpreted as a type of self-
organization, as regular structures may result from an initially unstructured
state, through interactions between the components of the systems [5].

In real word swarm (such as flock of birds) can be seen like a self-organizing
system. The simple social model in standard PSO has some characteristics for

341

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

self-organization of dissipative structure. All system’s particles ”follow” the
best particle (local or global). Each particle evolution depends by it and by
all neighborhood particles history and by ”relations” established between it
and other system components. At each step the size and the direction of each
particle’s move is a function of its own history (experience) and the social
influence of its peer group. This dependence function can express the feedback
relations that exist between the system components.

In this paper we try to identify some factors that keeps a system in an
equilibrium state or perturbs the system using PSO technique. The factors
are: inertia weight (w) and learning factors (or acceleration constants - c1, c2).
Several numerical experiments performed in section 4 will prove that a linearly
decreasing inertia weight (at each generation) performs better that a constant
value for this parameter. Moreover, if we stop the process of decreasing at
some level we can obtain much better results.

Concerning learning factors (c1, c2), numerical experiments prove that lower
values determine equilibrium states and upper values determine perturbations.

The Algorithm. PSO is initialized with a group of random particles
(solutions) and then searches for optima by updating each generation. Each
particle i has an associated current position in search space xi, a current ve-
locity vi and a personal best position in search space yi. For each dimension
of search space we have two limits: −xmax and xmax. In every iteration, each
particle is updated by following two best values. Our model uses a modified
Particle Swarm Optimization algorithm [11].

S1 Initialize the swarm of particles randomly
S2 While not stop condition do
S3 For each particle do

S31 Compute fitness of the particle
S32 If the current fitness value is better than pbest, then update pbest
S33 Determine nbest for the current particle: choose the particle with

the best fitness value of all the neighbors as the nbest
S34 Update particle’s velocity according to eq. (1)
S35 If (rand() < velocity chaos factor) then perturb particle’s velocity

according to eq. (3)
S36 Update particle’s position according to eq. (2)
S37 If (rand() < position chaos factor) then perturb particle’s position

according to eq. (4)
S4 EndFor

342

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

The formula for particle velocity update:

vid = w ∗ vid + c1 ∗ rand() ∗ (pid − xid) + +c2 ∗ rand() ∗ (pnd − xid) (1)

Each component of the velocity vector is restricted to a range [−vmax,
vmax] to ensure that individual particles do not leave the search space. We
have chosen that vmax to be xmax.

The formula for particle location update:

xid = xid + vid (2)

The chaos for velocity of particle is represented as:

vid = rand() ∗ vmax,d (3)

The chaos for location of particle is represented as:

xid = Random(xmin,d, xmax,d) (4)

where:

• rand() is a function which generates a random real value between 0 and
1;

• Random(a, b) is a random value between a and b;

• c1 and c2 are two learning factors, which control the influence of pbest
and nbest on the search process. The learning factors c1 and c2 represent
the weighting of the stochastic acceleration terms that pull each particle
toward pbest and nbest positions;

• w is the inertia weight. Inertia weight was first introduced by Shi and
Eberhart [9]. The function of inertia weight is to balance global explo-
ration and local exploitation.

The above algorithm is quite different from the standard PSO algorithm
[11]. Standard PSO algorithm works on two stages: one stage that estab-
lishes the fitness, pbest and nbest values for each particle and another stage
that determines the velocity (according to equation (1)) and makes updates
according to equation (1) for each particle. Standard PSO usually works with

343

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

two populations/swarms. Individuals are updated by computing the pbest and
nbest value using the information from the previous population. The newly
obtained individuals are added to the current population.

Our algorithm performs all operations in one stage only: determines the
fitness, pbest, nbest and velocity values only when a particle is about to be
updated. In this manner, the update of the current particle takes into account
the previous updates in the current generation. Our PSO algorithm uses only
one population/swarm. Each updated particle will automatically replace its
parent.

Note that similar perturbation factors can be found in PSO algorithm pro-
posed in [12], but this model is quite different: in [12] both chaos factors are
applied after that the velocity and position of particle are computed. In our
model we determine particle’s velocity, perturb this (first chaos factor), com-
pute particle’s position and the also perturb this.

Algorithm’s parameters
Algorithm’s parameters are presented in table 1.

Table 1: PSO Parameters

Parameters Value

Particles Number 20

Dimensions Number 5

Generations Number 1000

Neighborhood Euclidean distance

Inertia weight Linearly decreasing with threshold

Social factor variable, between 0.2 and 2.6

Cognitive factor variable, between 0.2 and 2.6

Position chaos factor variable, between 0.1 and 1

Velocity chaos factor variable, between 0.1 and 1

5. Experiments

Test Functions In order to test the capability of the PSO to ”sustain-
able development”, ten functions that are commonly used in the evolutionary

344

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

computation literature [8, 10] are used. All functions are designed to have
minimum at the origin. These functions are presented in table 2.

Experiment 1. For assessing the performance of the model proposed in
this paper we will compare three algorithms: two that use a linear decreasing
inertia weight during generational updating (one that stops at some level -
Decr w 1 - and one that does not stop - Decr w 2) and another algorithm that
use a fix weight for all generations. For first two algorithms inertia weight
starts to decrease from 1.5 value to 0.1 (the threshold), respectively to 0, and
the third algorithm uses the same randomized inertia weight in all generations
(the inertia weight is set to [0.5 + (rand()/2.0)], which is selected according
with Clerc’s constriction factor [4]).

Table 2: Test functions used in our experimental study. The parameter n is
the space dimension (n = 5 in our numerical experiments) and fmin is the
minimum value of the function. All functions should be minimized.

Test function Domain fmin

f1(x) =
n∑

i=1

(i · x2
i). [-10, 10]n 0

f2(x) =
n∑

i=1

x2
i . [-100, 100]n 0

f3(x) =
n∑

i=1

|xi| +
n∏

i=1

|xi|. [-10, 10]n 0

f4(x) =
n∑

i=1

(
i∑

j=1

xj

)2

. [-100, 100]n 0

f5(x) = maxi{xi, 1 ≤ i ≤ n}. [-100, 100]n 0

f6(x) =
n−1∑
i=1

100 · (xi+1 − x2
i)2 + (1 − xi)2. [-30, 30]n 0

f7(x) = 10 · n +
n∑

i=1

(x2
i − 10 · cos(2 · π · xi)) [-5, 5]n 0

f8(x) = −a · e−b

√
n∑

i=1

x2
i

n − e

∑
cos(c·xi)

n + a + e. [-32, 32]n , a = 20, b = 0.2,
c = 2π.

0

f9(x) = 1
4000

·
n∑

i=1

x2
i −

n∏
i=1

cos(xi√
i
) + 1. [-500, 500]n 0

f10(x) =
n∑

i=1

(−xi · sin(
√

|xi|)) [-500, 500]n -n∗ 418.98

345

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

For this experiment we have used in all iterations constant learning factor
(c1 = c2 = 0.8) and chaos factors: cv = 0.2 and cp = 0.3. We have chosen
to perform this experiment because the inertia weight controls the impact of
particle is prior-period velocity on its current velocity [2].

In figure 1 and 2 we have represented the results (pbest value) obtained
during 100 runs for all functions. We can observe that the algorithm with
linearly decreasing inertia weight has the best performance.

Experiment 2. For assessing the performance of the proposed model,
we will run the algorithm for different values of learning factors from [0.2, 2]
range (using for inertia weight the linearly decreasing idea because we saw
in previous experiment that this works better than the other models). We
suppose that both coefficients have same value (social behavior and cognitive
behavior have same influence). We have performed this experiment because
of the importance of learning factors: in every iteration each particle’s veloc-
ity is accelerated towards previous best position and towards a neighborhood
(global) best position [2]. Chaos factors are similar with those used in first
experiment.

By looking at the shape of curves in the Figure 3, it is easy to see a
”balance point” for our algorithm. When the coefficient c is larger than the
balance value, the system has a chaotic state.

Experiment 3. This experiment serves our purpose to compare the per-
formance of the two algorithms proposed in this paper. First algorithm uses
a linearly decreasing inertia weight and second algorithm uses a fix inertia
weight. Both algorithms are run for different values of learning factors.

Experiment 4. Another two factors that can perturb or not our system
are chaos coefficients. In figure 4 are depicted the results obtained running
the PSO algorithm that uses linearly decreasing weight (from 1.5 to 0.1) for
different values of chaos coefficients (in [0, 1] range). We can see that for all
functions a value for chaos factors around 0.5 value assures a steady state for
the system. Little values determine the system to entry in a stable state and
big values for chaos factor determine large perturbations.

6. Conclusion and Further Work

In this paper a new far from equilibrium computational model based on
Particle Swarm Optimization technique has been proposed. The new elements
introduced by this model are: the similarities between far from equilibrium sys-
tems and particle swarm. Several numerical experiments have been performed

346

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

Figure 1: Best value for first 6 functions during 100 runs

f1

0

2

4

6

8

10

12

1 13 25 37 49 61 73 85 97

Runs

B
e
s
t

fi
tn

e
s
s

Decr w 1
Decr w 2
Fix w

f2

0

5

10

15

20

1 10 19 28 37 46 55 64 73 82 91 100

Runs

B
e
s
t

fi
tn

e
s
s

Decr w 1
Decr w 2
Fix w

f3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 19 28 37 46 55 64 73 82 91 100

Runs

B
e
s
t

fi
tn

e
s
s

Decr w 1
Decr w 2
Fix w

f4

0

5

10

15

20

25

30

1 10 19 28 37 46 55 64 73 82 91 100

Runs

B
e
s
t

fi
tn

e
s
s

Decr w 1
Decr w 2
Fix w

f5

0.3

0.8

1.3

1.8

2.3

2.8

3.3

3.8

1 10 19 28 37 46 55 64 73 82 91 100

Runs

B
e
s
t

fi
tn

e
s
s

Decr w 1
Decr w 2
Fix w

f6

0

500

1000

1500

2000

2500

1 11 21 31 41 51 61 71 81 91

Runs

B
e
s
t

fi
tn

e
s
s

Decr w 1
Decr w 2
Fix w

347

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

Figure 2: Best value for last 4 functions during 100 runs

f7

4

6

8

10

12

14

16

18

20

22

1 10 19 28 37 46 55 64 73 82 91 100

Runs

B
e
s
t

fi
tn

e
s
s

Decr w 1
Decr w 2
Fix w

f8

1.5

2.5

3.5

4.5

5.5

6.5

7.5

1 10 19 28 37 46 55 64 73 82 91 100

Runs
B

e
s
t

fi
tn

e
s
s

Decr w 1
Decr w 2
Fix w

f9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 19 28 37 46 55 64 73 82 91 100

Runs

B
e
s
t

fi
tn

e
s
s

Decr w 1
Decr w 2
Fix w

f10

-12000

-11000

-10000

-9000

-8000

-7000

-6000

-5000

-4000

1 11 21 31 41 51 61 71 81 91

Runs

B
e

s
t

fi
tn

e
s

s

Decr w 1
Decr w 2
Fix w

348

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

Figure 3: Evolution of best values for different learning factors

0

1

2

3

4

5

6

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

Learning factors (c1 = c2)

B
e

s
t

f1 f2 f3 f4

f5 f8 f9

Figure 4: Evolution of best values for different learning factors - comparison
for f1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0
.2

0
.6 1

1
.4

1
.8

2
.2

2
.6

Learning factors

B
e
s
t

Decreasing inertia weight
Fix inertia weight

349

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

using different control parameters values. Further numerical experiments will
analyze the relationship between the model parameters and it performance.

References

[1] P. Bak, How Nature Works: The Science of Self-Organized Criticality,
Springer, Berlin, 1996.

[2] A. Brabazon, A. Silva, T. F. Sousa, M. O’Neill, R. Matthews, E. Costa,
A Particle Swarm Model of Organizational Adaption, Proceedings of Genetic
and Evolutionary Computation Conference, Seattle, USA, 2004.

[3] A. J. Carlisle, Applying the Particle Swarm Optimizer to Non-Stationary
Environments, Ph.D. Thesis, Auburn University, USA, 2002.

[4] R. C. Eberhart and Y. Shi, Particle swarm optimization: developments,
applications and resources, Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2001), Seoul, Korea. 2001

[5] F. Heylighen, The Science of Self-organization and Adaptivity, in: L. D.
Kiel, (ed.) Knowledge Management, Organizational Intelligence and Learning,
and Complexity, in: The Encyclopedia of Life Support Systems (EOLSS), Eolss
Publishers, Oxford.

[6] J. Kennedy, R. C. Eberhart, Particle Swarm Optimization, Proceedings
of the 1995 IEEE International Conference on Neural Networks, pp. 1942-1948,
1995.

[7] G. Nicolis, I. Prigogine, I. Self-Organization in Non-Equilibrium Sys-
tems, Wiley, New York, 1977.

[8] Y. Shi, R. Eberhart, Empirical study of particle swarm optimization,
Proceedings of the Congress on Evolutionary Computation, pp. 1945-1950,
1999.

[9] Shi, Y. and Eberhart, R. C. A modified particle swarm optimizer, Pro-
ceedings of the IEEE Congress on Evolutionary Computation (CEC 1998),
Piscataway, NJ. pp. 69-73, 1998

[10] P. N. Suganthan, Particle swarm optimiser with neighbourhood oper-
ator, Proc. Congress on Evolutionary Computation, pp. 1958- 1962, 1999.

[11] H. Xiaohui, S. Yuhui, R. Eberhart, Recent Advances in Particle Swarm,
Proceedings of the IEEE Congress on Evolutionary Computation, pp. 90 - 97,
2004.

[12] X. F. Xie, W. J. Zhang, Z. L. Yang, A Dissipative Particle Swarm Op-
timization, Proceedings of the Congress on Evolutionary Computation (CEC),

350

L. Dioşan, D. Dumitrescu, D. David - FFE Computation and PSO

Hawaii, USA, 2002, pp. 1456 - 1461.

Laura Dioşan, D. Dmitrescu, Delia David
Department of Computer Science
Babeş Bolyai University of Cluj-Napoca
Address: Kogălniceanu, 1
email: lauras, ddumitr@cs.ubbcluj.ro, delia deea@yahoo.com

351

