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Abstract. The objective of this work is to present some results con-
cerning the neuro-fuzzy control synthesis as applied to electrohydraulic ser-
vomechanisms actuating primary flight controls. This represents a remark-
able control strategy, with antisaturating and antichattering properties, which
is in fact independent of mathematical model of the system, thus achiev-
ing certain robustness and reducing complexity. Thus, the paper’s title is
thought as a paraphrase to a recent sentence of Professor Michael Athans
(MIT, Cambridge, USA): Crisp control is always better than fuzzy control
(see: http://fuzzy.iau.dtu.dk/download/athans99/sld001.htm).

2000 Mathematics Subject Classification: 93C42 – fuzzy control, 93C95 –
control applications.

1. INTRODUCTION

This work addresses the problem of laboratory test validation for an elec-
trohydraulic motion control system (EHMCS) based on neuro-fuzzy synthesis.
The fuzzy supervised neurocontrol (FSNC) of an analogous electrohydraulic
servomechanism was previously illustrated in a theoretical framework, with
only numerical validation, in recent works of the authors [1]-[3]. A LabView
implementation of the algorithm was performed. The experimental results
indicate the effectiveness of the neuro-fuzzy control versus the classical ap-
proaches PID, LQG etc.
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1.jpg

Figure 1: Partial view of the EHCMS

2. CONTROL PROBLEM. CLASSICAL VERSUS
ARTIFICIAL INTELLIGENCE APPROACH

The EHMCS Figure 1 consists firstly of a double effect hydraulic cylinder
with S = 3× 10−4m2 piston area and 9.1× 10−2m half of piston stroke and an
ORSTA TGL33649 electrohydraulic (servo)valve. The valve is a direct valve,
in which a linear motor drives the spool directly according to the input current.
The valve has a nominal flow of 40 × 10−3m3/60s , at the nominal pressure
drop of 70 bar. Secondly, a PC with dual processor Pentium 4 2x3.0 GHz
and 1 GB of RAM controls the system through a DAQ PCI 6040E National
Instruments. Thirdly, an inductive position transducer Penny Gilles and
two Hottinger Baldwin Messtechnik (HBM) pressure transducers provide the
measurement input for DAQ. Finally, the inertial load is simulated by an
inertial load simulator and the hydraulic power is supplied by a hydrostatic
generator.

The EHMCS is in fact a tracking system. Therefore, for this system the aim
of control synthesis is to have a good tracking by the piston position of the spec-
ified desired position references introduced as electrical signals by PC. When
this control problem is treated in classical manner, a mathematical model of
the system must be firstly performed. Secondly, a mathematical procedure of
control synthesis must be developed. But, in classical manner, the procedure
is dependent of model, and the model is not infallible, and frequently classi-
cal control methodologies fail facing to mathematical model complexity. For
instance, a non-exhaustive mathematical model of the above described system
is the following:
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m ẍ + fẋ + F + Ff = S(p1 − p2), xv = kxvuu

ṗ1 =
B

C + Sx
{cW |xv|sgn[ps(1+sgn(xv))−2p1]

√
|ps(1 + sgn(xv))− 2p1|/ρ−Sẋ}

(1)

ṗ2 = B
C−Sx

{cW |xv|sgn[ps(1−sgn(xv))−2p2]
√
|ps(1− sgn(xv))− 2p1|/ρ+Sẋ}

Ff = σ0xf + σ1ẋf + fvẋ

ẋf = ẋ− |ẋ|xf/g(ẋ)

g(ẋ) = [Fc + (Fs − Fc)e
− ẋ

vs ]

Given this EHMCS mathematical embodiment, classical solutions of the con-
trol problem ”find control variable u such that tracking error ε(t) := r(t) −
kpx(t) −→ 0 as t −→ ∞ for specifie reference signals r(t)” have to facing
obvious difficulties.

The nomenclature in equations (1) is given in cited author’s references and
will not be repeated herein. kp is the position transducer coefficient [V/m].

3. NEUROCONTROL

Thus, artificial intelligence based new approach in the treatment of con-
trol problem concerns principially an input-output behavioral philosophy
of solution. In fact, the mathematical model (1) will herein serve only as
illustration of applying the new strategy. In the on line process variant, the
mathematical model is naturally substituted by the physical system.

In this and next Sections, the structure of the proposed FSNC is shortly
described. The algorithm is composed of a neurocontrol and a fuzzy logic
control supervising neurocontrol. As neurocontrol, an unilayered perceptron
architecture was used. For this elementary network, two weighting parameters
v1, v2 and a linear combiner generate the neurocontrol

un = v1y1 + v2y2 =: v1(r − kpz) + v2(p1 − p2) (2)

where r(t) - reference input (command) [V ]. Worthy noting, from EHMCS
behavior view point, the input is u and the output is y = (y1, y2). From

261



I. Ursu, G. Tecuceanu, F.Ursu and R. Cristea - Neuro-fuzzy control is ...

neurocontrol training viewpoint, the system performance is assessed by the
cost function, a criterion supposing a trade-off between the first input y1 -
tracking error -, the second input component y2 and the control u.

J =
1

2n

n∑
i=1

(q1y
2
1(i) + y2

2(i) + q2u
2
n(i)) :=

1

2n

n∑
i=1

J(i) (3)

Figure 2: Triangular membership functions for: a)scaled input variables y1, y2

and b) l2(y1)

The weighting vector v = [v1, v2]
T is updated online by the gradient descent

learning method [6] to reduce the cost J. Consequently, the update is given by
the expression

v(n + 1) = v(n) + ∆v(n)

∆v(n) := −diag(δ1, δ2)
∂J

∂v(n)
= (4)

−diag(δ1, δ2)
n∑

i=n−N

(
∂J(i)

∂y(i)

∂y(i)

∂u(i)
+

∂J(i)

∂u(i)

)
∂u(i)

∂v(i)

where the matrix diag(δ1, δ2) introduces the learning scale vector, ∆v(n) is the
weight vector update and N marks a back memory (of N time steps). The

derivatives in (4) require only input-output information about the system. ∂y(i)
∂u(i)
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is online approximated by the relationship

(y(i)− y(i− 1))/(u(i)− u(i− 1))

The results obtained using this simple unilayered perceptron are very satisfac-
tory.

4. FUZZY LOGIC CONTROL AND FUZZY SUPERVISED
NEUROCONTROL

In many applications, particularly in the field of aerospace engineering, ac-
tuator saturation is the principal impediment to achieving significant closed-
loop performances [4]. In the learning process with artificial neural networks,
the risk of control saturation is real. To counteract this risk and not com-
promise the learning neural network by harmful phenomena as control’s chat-
tering and making worse system’s performance, FSNC is herein considered as
AW strategy. Thus, the control will have a switching type structure, which
will be clarified in the following.

Figure 3: Singleton membership function for scaled fuzzy control uf

The commonly used Mamdani fuzzy logic control supposes three main com-
ponents: the fuzzyfier, the fuzzy reasoning, and the defuzzyfier [5]. Herein, the
proposed fuzzyfier component converts the crisp input signals

l2(y1k) :=

√√√√√ k∑
j=k−2

y2
1k, y1k, y2k, k = 1, 2, . . . (5)
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into their relevant fuzzy variables (or, equivalently, membership functions)
using a set of linguistic terms: zero (ZE ), positive or negative small (PS,
NS ), positive or negative medium (PM, NM ), positive or negative big (PB,
NB); thus, fuzzy sets and their pertinent membership functions are produced
(for sake of simplicity, triangular and singleton type membership functions are
chosen, see Figures(2), (3). The considered l2 norm computes, over a sliding
window with a length of k samples, the maximum variation of the tracking
error. The insertion of this crisp signal in the fuzzyfier will result in a reduction
of fuzzy control switches due to the effects of spurious noise signals.

The strategy of fuzzy reasoning construction embodies herein the idea of a
(direct) proportion between the error signal y1 and the required fuzzy control
uf . Thus, the fuzzy reasoning engine totals a number of n = 4× 7× 7 IF. . . ,
THEN. . . rules, that is the number of the elements of the Cartesian product A×
B×C, A := {ZE; PS; PM ; PB}, B = C := {NB; NM ; NS; ZE; PS; PM ; PB}.
These sets are associated with the sets of linguistic terms chosen to define the
membership functions for the fuzzy variables l2(y1), y1 and, respectively, y2.
Consequently, the succession of the n rules is the following:

1. IF l2(y1) is ZE and y2 is PB and y1 is PB, THEN uf is PB

2. IF l2(y1) is ZE and y2 is PB and y1 is PM, THEN uf is PM

...

7. IF l2(y1) is ZE and y2 is PB and y1 is NB, THEN uf is NB

8. IF l2(y1) is ZE and y2 is PM and y1 is PB, THEN uf is PB

...

196. IF l2(y1) is PB and y2 is NB and y1 is PB, THEN uf is NB

Let τ be the discrete sampling time. Consider the three scaled input crisp
variables l2(y1k), y1k and y2k, at each time step tk = kτ(k = 1, 2, . . .). Taking
into account the two ordinates corresponding in Figures (2), (3) to each of the
three crisp variables, a number of M ≤ 23 combinations of three ordinates
must be investigated. Having in mind these combinations, a number of M
IF..., THEN... rules will operate in the form

IF y1k is Bi and y2k is Ci and l2(y1k) is A,

THEN ufk is Di, i = 1, 2, . . . ,M (6)
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(Ai, Bi, Ci, Di are linguistic terms belonging to the sets A, B, C, D and D =
B = C, see Figures (2), (3). The defuzzyfier concerns just the transforming of
these rules into a mathematical formula giving the output control variable uf .
In terms of fuzzy logic, each rule of (6) defines a fuzzy set Ai×Bi×Ci×Di in the
input-output Cartesian product space R+ × R3, whose membership function
can be defined in the manner

µ = min[µBi
(y1k), µCi

(y2k), µAi
(l2(y1k)), µDi

(u)], i = 1, . . . ,M (k = 1, 2, . . .)
(7)

For simplicity, the singleton-type membership function µD(u) of control
variable has been preferred; in this case, µDi

(u) will be replaced by u0
i ,

the singleton abscissa. Therefore, using 1) the singleton fuzzyfier for uf , 2)
the center-average type defuzzyfier, and 3) the min inference, the M IF. . . ,
THEN. . . rules can be transformed, at each time step kτ , into a formula giving
the crisp control uf [6]:

uf =
M∑
i=1

µui
u0

i /
M∑
i=1

µui
(8)

The FSNC operates as fuzzy logic control in the case when neurocontrol sat-
urated, or so called l2-norm of tracking error y1 increased. FSNC switches
on neurocontrol whenever un is not saturating (|un| ≤ un,max) and scaled
l2(y1) < l2,min. In the case of fuzzy control operating, the fuzzy neurocontrol
un is concomitantly updated considering the real acting fuzzy control uf .

Figure 4: LQG algorithm: response to step reference
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Figure 5: Neuro-fuzzy algorithm: response to step reference

5. EXPERIMENTAL RESULTS

The aforementioned FSNC was applied in simulation studies of the systems
similar to (1) [1]–[3]. Despite of such model complexity, the simulation studies
performed in the cited references attest good tracking performance, both in
the presence of step and sinusoidal combination type signals r.

The present paper report that the FSNC was applied to the system de-
scribed in Section 2. The detailed in Sections 3, 4 algorithm was implemented
using LabView programming language. Alternate classical algorithms P, PI
and LQG were also implemented, in order to evaluate and compare the re-
sults. Various experimental results were thus collected.

In Figures (4)-(7), representative time responses to step and sinusoidal ref-
erences are shown, and a comparison LQG versus FSNC is emphasized. The
system controlled with FSNC is proved to be better than the corresponding
LQG system (see transitory and stationary regime performances), in accor-
dance with simulation studies developed in previous works of the authors.
Thus, the above results are very encouraging from viewpoint of development
of the intelligent control strategies.
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Figure 6: LQG algorithm: response to sinusoidal reference (amplitude 3cm,
frequency 3Hz)

Figure 7: Neuro-fuzzy algorithm: response to sinusoidal reference (amplitude
3cm, frequency 3Hz)
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6. CONCLUSIONS

While most of reported results in the literature of the field are categorically
favorable to the fuzzy viewpoint, we do not evade that there are many op-
ponents of the fuzzy control; see, for example, the recent tempestuous and
radical challenge of Michael Athans, a great name of the classical control. In
his exposition titled ”Crisp control is always better than fuzzy control” (see
fuzzy.iau.dtu.dk, Athans concludes sententiously: ”fuzzy control is a parasitic
technology”. On the contrary, our conclusion is that, in various approaches
[1] [3], [7], [8], regarding as applications active and semiactive suspensions
and electrohydraulic servo actuating primary flight controls, the fuzzy control
worked very well, much better than classical methodologies PID, LQG etc.
However, facing with assertions as that of Athans, we consider in principle
that even the subjective considerations are necessary and beneficent.

The proposed FSNC is categorically advantageous in comparison with the
system presented in [9], since in that approach the synthesis is dependent
of a linear model of the controlled system. This new approach of control
synthesis accounts for the saturation nonlinearity and provides in addition
antichattering and robustness properties to the controlling system. Indeed,
the obtained control is robust since it does not demand a model of the system.
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