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Abstract. This paper deals with the problem of robust control, from
the theory and practical design of control systems, using a general view point
which refers only the differential model of controlled object and regarding
the reference variable’s trajectory as restrictions for ordinary differential equa-
tions, that is as particular integrals (singular solutions). Based on a necessary
and sufficient condition to be particular integrals, the restrictions are used to
provide the differential model for control laws. This method may reject the
perturbation terms that are accurate represented by a power series, at lest on
a finite sequence of intervals that cover the entire necessary time domain. A
particular case, that serves as an example, is that of an electrohydraulic ser-
voactuator designed for reference position tracking. The method generates a
structural stable control law which is robust to any modification or perturba-
tion of the theoretical model considered.
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Notations:
x - state variable vector of dim n, in Rn

u - control variable vector of dim n, in U ⊂ Rn

λ - constitutive parameters vector of dim p, in Λ ⊂ Rp

y - output variable vector of dim n
Q reference function - function Q of x and/or y besides of u, that express

characteristic properties of system evolution
Q reference trajectory - function R of the independent variable, s, which

gives the values of Q
Feasible Q reference trajectory - function R that is possible to be main-

tained using adequate control variable law, ur

State modelling function - vectorial function,f, of x and u, Im(f) ⊂ Rn,
giving ẋ
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Control modelling function - vectorial function, g, of x and u, Im(g) ⊂ Rm,
giving u̇

Constitutive modelling function - vectorial function, λ, of x and u, Im(λ) ⊂
Rp

Output modelling function - vectorial function, h, of x and u, Im(h) ⊂ Rn,
giving y

Restriction function - implicit function, W , defined as W (x, u, s) ≡ Q(x, u)−
R(s)

Restriction equation - equation derived considering W as well defining a
singular solution of the differential system for ẋ and u̇

Reference state and control variable, xr, ur - state and control variable
corresponding to the feasible Q reference trajectory

Introduction and statement of the general problem

The origin of this paper is the thought to treat in a unified manner and
to solve using a unique conceptual procedure almost all the control problems.
First attempt was made in [5], and developed in [4]. To show the method and
its significant results it is useful to approach a less difficult problem, as is the
one of the reference [1], regarding the state-tracking problem for an electro-
hydraulic servo, solved there using a neuro-fuzzy controller, that is solved by
an extrinsic procedure. In a preceding paper of the authors, [2], the problem
was solved by an intrinsic procedure, but having a definite specific and a little
cumbersome character.

A coherent and consistent treatment of the control problem, in a unified
manner using a single view point, as an inverse problem, is the reference [3].
The papers [5], [6], [7], [8] and the thesis [4] follow this view point and develops
an algorithmic procedure to solve the control problem as an inverse problem,
in fact to solve the differential algebraic (system of) equation(s) that represent
the evolution of a controlled physical object.

The common predefined algebraic analytic expression of the control law for
an exact feasible Q reference trajectory or for an asymptotic convergence to a
Q reference trajectory represent an artificial implicit condition imposed to the
solution of the control problem. A more physical intuitive and adaptive ana-
lytic approach is to express the time rate of u by its modeling function, which
must be determined according to some requirements on the system evolution.

236



S. Radnef - Control laws free of smooth perturbation terms

So, the self consistent model (that is autonomous) of state-feedback control
problem becomes:

ẋ = f(x, u; λ)
u̇ = g(x, u; λ)

(1)

Q(x, u) = R(s) (2)

considering s a monotonous function of time variable or, for output-feedback
control problem:

ẋ = f(x, u; λ)
u̇ = g(y, u; λ)
y = h(x, u; λ)

(3)

Q(y, u) = R(s) (4)

This way, the three well known types of control problems are defined by
means of Q reference trajectory properties:

(a) stability with respect to Q reference function trajectory of a defined
evolution of (1)

(b) optimality regarding extreme/ limiting values of Q reference trajectory
(c) tracking a predefined Q reference trajectory.
In fact we have two problems to solve:
(1) statement the values of the Q reference function
(2) tracking the Q reference function
after we have had solved the construction of an adequate Q reference func-

tion for the objective we have to achieve. The first condition for the (1) or (3)
control problem is to be a well posed problem, which is Q reference function be
a feasible one. The first problem, which may include the optimality one by a
set of mathematical restrictions, is considered for the purpose of this paper as
solved and we treat only the second one, which may be formulated as follows:

”Giving the differential model of the physical system evolution

ẋ = f(x, u; λ)
u̇ = g(x, u; λ)

Find the control modeling function, such that, for a feasible reference tra-
jectory, R
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lim
t→∞

||Q(x, u)−R(s)|| = 0”

The solution of the so formulated state-tracking problem is approached
regarding the restriction function defined by the implicit equation:

Q(x, u)−R(s) = 0 (5)

and denoted by W (σ, u) with σ = (x, l)T , as a singular integral of the dif-
ferential system (1). The necessary and sufficient condition for (5) to be a sin-
gular integral of (1) provide, following the results of [4] and [8], the restriction
equation which determine the control modeling function g. The algorithmic
procedure developed in [4] and [8] ensures a step by step construction of the
appropriate restriction equation for g function establishment.

A brief presentation of the results of [4], [8], that will be used throughout
if this paper, is quite necessary to understand the method to determine as
solution of the control problem. The main fact is that of the following lemma:

Lemma NSC. The necessary and sufficient condition that the algebraic
equation:

0 = W (σ, u)

may determine a singular solution of (1) system is:

W (σ, u) = 0 =⇒ 0 = Wσ · f(σ, u) + Wu · g(σ, u)

So, we take into account that:
(1) Between the values of Wσ · f(σ, u) + Wu · g(σ, u) and the values w of

W (·) seems to be a relationship which is of function type for w = 0
(2) For each value w of W (·) we choose a single value of u to reach the

zero value of W (·) in an asymptotic way (at least),
and by consequence, we are able to define the following function:

Φ : Im(W )×Dom(W ) → Rq,

having the values for (w, σ, u) ∈ Im(W )×Dom(W ) defined by the analytical
formula:

Φ(w, σ, u) = Wσ · f(σ, u) + Wu · g(σ, u) (6)
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with the following features:

(σ, u) ∈ R2 → (0 ≡ Φ(0, σ, u) and 0 6= Φ(w 6= 0, σ, u)) (7)

Φ ∈ C−1(Im(W )×Dom(W ), Rq) (8)

This way, the necessary and sufficient condition (NSC) is expressed by the
relation (RE), with (7), (8) defining features, supposing that it has solutions
on Dom(W ). The Φ function is a fitting indicator for W to be a singular
implicit solution of (1) and represent the time rate of W along the regular
solutions of (1).

DW

Dt 1
= Φ(W, σ, u) (9)

Hence one can prescribe the structure of this function and thus defining
the dynamics of nonzero values of W . Tacking into account these meanings,
the Φ function may be named “perturbation function”. The basic requirement
for the perturbation function is to provide a stable and (uniform) asymptotic
behavior of W around the zero value, that is we may find at least one δ0 ∈ R+

so that:

((σ0, u0), ||W (σ0, u0)|| < δ0) → lim
t→∞

W (σ(t, σ0, u0), u(t, σ0, u0))|(DS) = 0 (10)

As a particular situation, Φ may have a linear structure like this:

Φ(w, σ, u) ≡ Φ(W ) = S ·W

with S a stability matrix for the differential system with respect to W :

Ẇ = S ·W (11)

Now the (6) definition formula, having the perturbation function defined
for (9-10) become an equation, named ”restriction equation” that is equivalent
to (NSC) under the features (7), (8).
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(RE) Corollary.The (6) relation with perturbation function having the
properties (7), (8), (10) is the necessary and sufficient condition for the re-
striction function to define a singular implicit solution of (1).

To simplify the style statement of ”(RE) Corollary” we denote (12) the
set {(6), (7), (8), (10)}. So, the necessary and sufficient condition for the
restriction function to be a singular implicit solution is (12). The differential
modeling function for control variables, g, derives from the restriction equation:

Wσ · f(σ, u) + Wu · g(σ, u) = Φ(W, σ, u) ∼= S ·W (12)

If rank(Wu) = m , (12) determines the differential modeling function U .
When rank(Wu) = q < m it is necessary to find out a new adequate restriction
function following the same requirements and rules used to obtain (6). Because
(12) is, in fact the essential necessary and sufficient condition upon W to be
singular implicit solution for (1), it becomes in a very natural way the new
restriction function to continue the algorithm for finding all the components
of g function. So:

0 = Wσ · f(σ, u) + Wu · g(σ, u)− Φ(W, σ, u) ∼= W̃ (W, σ, u, U) (13)

and not Wσ · f(σ, u) + Wu · g(σ, u) ≡ W̃ (σ, u) as is the usual procedure in
[3]. This way there are preserved the intrinsic characteristics of (6) and the
stability of W function. Also (13) provide an algorithm to determine the
differential modeling function for all control variables, at each step using the
fundamental lemma NSC for a new inverse problem. The coherent formulation
for the preceding explanations is the

Recurrence theorem. If W is the current restriction function, and is
the new one defined by (13) with Φ the current perturbation function.

Then (12) constructed for W̃ maintain the (12) for W with its stable
and asymptotic behavior around zero value.

The view point regarding the controlled systems and the method described
to solve the control problem is applied to a particular device, having only 4
equations and 2 explicit control variables, for a better understanding of the
physical behavior.
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Nonlinear System Control to be Solved

The differential model of the electrohydraulic servo is, [1], [2]:
ẋ1 = x2

ẋ2 = a1x1 + a2x2 + Kup + p(t, x)

ẋ3 = B{cwkvs|u|sgn[pa(1+sgn(kvsu))−2x3]

√
|pa(1 + sgn(kvsu))− 2x3|

ρ
− Sx2

C − Sx1

ẋ4 = B{cwkvs|u|sgn[pa(1−sgn(kvsu))−2x4]

√
|pa(1 + sgn(kvsu))− 2x4|

ρ
− Sx2

C − Sx1
having the control variables up = x3 − x4, the overall acting pressure on

the piston, and u the electrical control quantity, and p(t, .) as the “forcing
function”. The constitutive parameters are:

λ = [a1 a2 K B c w kvs pa ρ S C]T

with values from [1], [2]. The Q reference function is Qp(x, u) = x1 and the

feasible Q reference trajectoryR(t) = x1s(1− e−
1
tr ).

This state-tracking problem is solved by splitting the differential model in
two subsystems:

ẋ1 = x2

ẋ2 = a1x1 + a2x2 + Kup + p(t, x)

that describe the dynamic behavior of the principal mechanical device
which must be controlled by up , having the Q reference function just men-
tioned above, and

ẋ3 = B{cwkvs|u|sgn[pa(1+sgn(kvsu))−2x3]

√
|pa(1 + sgn(kvsu))− 2x3|

ρ
− Sx2

C − Sx1

ẋ4 = B{cwkvs|u|sgn[pa(1−sgn(kvsu))−2x4]

√
|pa(1 + sgn(kvsu))− 2x4|

ρ
− Sx2

C − Sx1
that describes the dynamic behavior of the hydraulic device which controls

the principal mechanical device, having u the control variable, the Q reference
function Qc(x, u) = x3 − x4 and the feasible Q reference trajectory R(t) = up.
First of all we solve the control problem for the (14) system, determining the
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necessary values of the variable up. These values will be the reference trajectory
to solve the second control problem.

The method to solve each of these two control systems, with its own refer-
ences, is that presented in the former chapter.

Position Tracking for a Servoactuator

For the dynamics of the first subsystem, the restriction equation will be
find using the linear structure of the perturbation function. Performing two
steps of the algorithm presented at the first chapter, we derive:

ẍ1 − ẍ1r − (λ1 + λ2) · (ẋ1 + ẋ2r) + (λ1 · λ2) · (x1 + x1r) = 0
having λk=1,2 negative real values, and then:

up =
1

K
[−a1x1−a2x2−p(t, x)+(λ1+λ2)·(x1−ẋ1r)−(λ1λ2)·(x1+x1r)+ẍ1r] (14)

where we have denoted by x1r the reference variable provided by the Q
reference trajectory function R.

The elements of the feasible Q reference trajectory are in Figure 1.

The tracking relative error is smaller than 10−4 .
It is possible to arrive at a higher order restriction equation by building

successively new restriction function of the type (13). After n steps we derive
the restriction equation:

0 =
n∑

k=0

Sk(x
(n−k)
1 − x

(n−k)
1r ) (15)

having Sk as the sum of products build with k negative real numbers
λi=1,2,... n (such a result is obtained in reference [9], but using other statements
relative to algebraic differential equations). This way, we are able to ignore the
forcing function p(t, .), because (15) use derivatives of state variables and we
can approximate p(t, .) by polynomial spline functions on each time interval
of numerical integration, having the degree less than the maximum derivative
degree for state variables. For a linear approximation of the forcing function
the control modelling function is:
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Figure 1:
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Figure 2:

üp =
1

K
[−a1ẋ2+x

(4)
1r +S1(x

(2)
2 −x

(3)
1r )−S3(x

(1)
2 −x

(2)
1r )+S3(x2−x

(1)
1r )−S4(x1−x1r)]

(16)
The forcing function does not appear explicitly in the above formula, but

its existence and effects are contained in the values of the state variables x1,2

and their time derivatives. Using this kind of control modelling function we
have obtained the elements of the feasible Q reference trajectory as those
presented in the following diagrams (Figure 2), considering also some starting
perturbations.

The tracking relative error is smaller than 10−4 .
For the dynamics of the second subsystem, the control one, the results

concerning the state variables, x3 := p1 and x4 := p2, and control variable u
versus time, t, are in Figure 3.
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Figure 3:
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Conclusions

The procedure proposed in this paper allows:
1) quickly solutions for the analysis of the nonlinear control problem

(feasible Q reference trajectory, influence of initial perturbations, . . . )
2) a complete ignoring of forcing function, that is a robust (and stable)

control
3) the split of a (very) difficult (tracking) control problem into more

easy to solve control problems
It must be underlined that even the system ẋ = f(x, u; λ) is stable for

every u as parameters the extended system (1) may be unstable. Therefore the
negative numbers λ used in the control modelling function must be determined
according to the relations which define the stability behavior of the differential
system (1), as is specified explicitly in [8].
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