# DIFFERENTIAL SUBORDINATIONS DEFINED BY USING SĂLĂGEAN DIFFERENTIAL OPERATOR AT THE CLASS OF MEROMORPHIC FUNCTIONS 

## Georgia Irina Oros

Abstract.By using the Sălăgean differential operator $D^{n} f(z), z \in U$ (Definition 1), at the class of meromorphic functions we obtain some new differential subordination.

Keywords: differential subordination, dominant.
2000 Mathematical Subject Classification:30C80.

## 1.Introduction and preliminaries

Denote by $U$ the unit disc of the complex plane:

$$
U=\{z \in \mathbf{C}:|z|<1\}
$$

and

$$
\dot{U}=U-\{0\} .
$$

Let $\mathcal{H}(U)$ be the space of holomorphic functions in $U$.
We let

$$
A_{n}=\left\{f \in \mathcal{H}(U), f(z)=a+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots, z \in U\right\}
$$

with $A_{1}=A$.
Let $\Sigma_{m, k}$ denote the class of functions in $\dot{U}$ of the form

$$
f(z)=\frac{1}{z^{m}}+a_{k} z^{k}+a_{k+1} z^{k+1}+\ldots, m \in \mathbf{N}^{*}=\{1,2,3, \ldots\}
$$

$k$ integer, $k \geq-m+1$, which are regular in the punctual disc $\dot{U}$. If $f$ and $g$ are analytic functions in $U$, then we say that $f$ is subordinate to $g$, written $f \prec g$ or $f(z) \prec g(z)$, if there is a function $w$ analytic in $U$ with $w(0)=0$, $|w(z)|<1$, for all $z \in U$ such that $f(z)=g[w(z)]$ for $z \in U$. If $g$ is univalent, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subseteq g(U)$.

A function $f \in \mathcal{H}(U)$ is said to be convex if it is univalent and $f(U)$ is a convex domain. It is well known that the function $f$ is convex if and only if

$$
f^{\prime}(0) \neq 0 \text { and } \operatorname{Re}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]>0, \text { for } z \in U
$$

We let

$$
K=\left\{f \in A, \operatorname{Re} e\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]>0, z \in U\right\}
$$

In order to prove the new results, we use the following results.
Lemma A. (Hallenbeck and Ruscheweyh [1, p.71]) Let h be a convex function with $h(0)=a$ and let $\gamma \in \mathbf{C}^{*}$ be a complex with Re $\gamma \geq 0$. If $p \in \mathcal{H}(U)$, with $p(0)=a$ and

$$
p(z)+\frac{1}{\gamma} z p^{\prime}(z) \prec h(z)
$$

then

$$
p(z) \prec q(z) \prec h(z)
$$

where

$$
q(z)=\frac{\gamma}{n z^{\frac{\gamma}{n}}} \int_{0}^{z} h(t) t^{\frac{\gamma}{n}-1} d t .
$$

The function $q$ is convex and is the best ( $a, n$ )-dominant.
Lemma B. [1, p.66, Corollary 2.6.g.2] Let $f \in A$ and $F$ is given by

$$
F(z)=\frac{2}{z} \int_{0}^{z} f(t) d t
$$

If

$$
\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>-\frac{1}{2}, z \in U
$$

then

$$
F \in K
$$

For the case when $F(z)$ has a more elaborate form, Lemma B can be rewritten in the following form:

Lemma C. Let $f \in A, \gamma>1$ and $F$ is given by

$$
F(z)=\frac{1+\gamma}{z^{\frac{1}{\gamma}}} \int_{0}^{z} f(t) t^{\frac{1}{\gamma}-1} d t .
$$

If

$$
\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>-\frac{1}{2}, z \in U
$$

then

$$
F \in K .
$$

Definition 1. [2] For $f \in A$ and $n \in \mathbf{N}^{*} \cup\{0\}$ the operator $D^{n} f$ is defined by

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{n+1} f(z)=z\left[D^{n} f(z)\right]^{\prime}, \quad z \in U .
\end{gathered}
$$

Remark 1. If $f \in A$,

$$
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, z \in U
$$

then

$$
D^{n} f(z)=z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}, z \in U
$$

## 2.MAIN RESULTS

THEOREM 1. Let $h \in \mathcal{H}(U)$, with $h(0)=1$, which verifies the inequality:

$$
\begin{equation*}
\operatorname{Re}\left[\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+1\right]>-\frac{1}{2(m+k)}, z \in U . \tag{1}
\end{equation*}
$$

If $f \in \Sigma_{m, k}$ and verifies the differential subordination

$$
\begin{equation*}
\left[D^{n+1}\left(z^{m+1} f(z)\right)\right]^{\prime} \prec h(z), z \in U \tag{2}
\end{equation*}
$$

then

$$
\left[D^{n} z^{m+1} f(z)\right]^{\prime} \prec g(z), z \in U
$$

where

$$
\begin{equation*}
g(z)=\frac{1}{(m+k) z^{\frac{1}{m+k}}} \int_{0}^{z} h(t) t^{\frac{1}{m+k}-1} d t . \tag{3}
\end{equation*}
$$

The function $g$ is convex and is the best $(1, m+k)$ dominant.
Proof. By using properties of the operator $D^{n} f$ we have

$$
\begin{equation*}
D^{n+1}\left(z^{m+1} f(z)\right)=z\left[D^{n}\left(z^{m+1} f(z)\right)\right]^{\prime}, z \in U . \tag{4}
\end{equation*}
$$

Differentiating (4), we obtain

$$
\begin{equation*}
\left[D^{n+1}\left(z^{m+1} f(z)\right)\right]^{\prime}=\left[D^{n}\left(z^{m+1} f(z)\right)\right]^{\prime}+z\left[D^{n}\left(z^{m+1} f(z)\right)\right]^{\prime \prime}, z \in U . \tag{5}
\end{equation*}
$$

If we let

$$
\begin{equation*}
p(z)=\left[D^{n}\left(z^{m+1} f(z)\right)\right]^{\prime}, \quad z \in U, \tag{6}
\end{equation*}
$$

then (5) becomes

$$
\begin{equation*}
\left[D^{n+1}\left(z^{m+1} f(z)\right)\right]^{\prime}=p(z)+z p^{\prime}(z), z \in U \tag{7}
\end{equation*}
$$

Using (7), subordination (2) is equivalent to

$$
\begin{equation*}
p(z)+z p^{\prime}(z) \prec h(z), z \in U, \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
p(z) & =\left[D^{n}\left(z^{m+1} f(z)\right)\right]^{\prime}=\left[z+\sum_{j=m+k+1}^{\infty} a_{j} j^{n} z^{j}\right]^{\prime} \\
& =1+a_{m+k+1}(m+k+1)^{n} z^{m+k}+\ldots
\end{aligned}
$$

By using Lemma A, for $\gamma=1, n=m+k$, we have

$$
p(z) \prec g(z) \prec h(z),
$$

where

$$
g(z)=\frac{1}{(m+k) z^{\frac{1}{m+k}}} \int_{0}^{z} h(t) t^{\frac{1}{m+k}-1} d t, z \in U
$$

and is the best $(1, m+k)$ dominant.

By applying Lemma C for the function given by (3) and function $h$ with the property in (1) for $\gamma=m+k>1$ we obtain that function $g$ is convex.

ThEOREM 2.Let $h \in \mathcal{H}(U)$, with $h(0)=1$, which verifies the inequality

$$
\operatorname{Re} e\left[\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+1\right]>-\frac{1}{2(m+k)}, z \in U .
$$

If $f \in \Sigma_{m, k}$ and verifies the differential subordination

$$
\begin{equation*}
\left[D^{n}\left(z^{m+1} f(z)\right)\right]^{\prime} \prec h(z), z \in U \tag{9}
\end{equation*}
$$

then

$$
\frac{\left.D^{n}\left(z^{m+1} f(z)\right)\right)}{z} \prec g(z), z \in U
$$

where

$$
g(z)=\frac{1}{(m+k) z^{\frac{1}{m+k}}} \int_{0}^{z} h(t) t^{\frac{1}{m+k}-1} d t, z \in U .
$$

The function $g$ is convex and is the best $(1, m+k)$ dominant.
Proof. We let

$$
\begin{equation*}
p(z)=\frac{D^{n}\left(z^{m+1} f(z)\right)}{z}, z \in U \tag{10}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
D^{n}\left(z^{m+1} f(z)\right)=z p(z), z \in U . \tag{11}
\end{equation*}
$$

By differentiating (11), we obtain

$$
\left[D^{n}\left(z^{m+1} f(z)\right)\right]^{\prime}=p(z)+z p^{\prime}(z), z \in U .
$$

Then (9) becomes

$$
p(z)+z p^{\prime}(z) \prec h(z)
$$

where

$$
p(z)=\frac{z+\sum_{j=m+k+1}^{\infty} a_{j} j^{n} z^{j}}{z}=1+p_{m+k+1} z^{m+k}+\ldots, \quad z \in U .
$$

By using Lemma A, for $\gamma=1, n=m+k$, we have

$$
p(z) \prec g(z) \prec h(z),
$$

where

$$
g(z)=\frac{1}{(m+k) z^{\frac{1}{m+k}}} \int_{0}^{z} h(t) t^{\frac{1}{m+k}-1} d t, z \in U
$$

and $g$ is the best $(1, m+k)$-dominant.
By applying Lemma C for function $g$ given by (3) and function $h$ with the property in (1) for $\gamma=m+k>1$, we obtain that function $g$ is convex.

## References

[1].S. S. Miller and P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
[2]Grigore Şt. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.

Georgia Irina Oros
Department of Mathematics
University of Oradea
Str. Armatei Române, No. 5
410087 Oradea, Romania
E-mail: georgia_oros_ro@yahoo.co.uk

