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1. Introduction

In 1964,W.A. Coppel [1] proposed an interesting application of Massera and
Schäfer Theorem ([4],p. 530) obtaining the necessary and sufficient conditions
for the existence of at least one solutions for the equations

x′(t) = A(t)x(t) + b(t) (1)

for every b(t) function.
More precisely, they consider b ∈ C, C being the class of the continuous and

bounded functions defined on R+ = [0,∞) with the norm ‖b‖ = sup
t∈R+

|b(t)|,

where | · | is the euclidian norm of Rn.
W.A. Coppel([2],Ch.V) treated the case when b ∈ L1, L1 represents the Ba-

nach space of the Lebesgue integrable functions on R+with the norm ‖b‖L1 =∫
R+

|b(t)|dt.
Using W.A.Coppel method in 1966 R.Conti [3] studied the same problem

for the particular case when b ∈ Lp, 1 ≤ p ≤ ∞, Lp being the space of the func-

tions with |b(t)|p integrable on R+ with the norm ‖b‖Lp =
{ ∫

R+ |b(t)|pdt
} 1

p

.

In 1968, Vasilios A. Staikos [6] studied the equation:

x′ = A(t)x + f(t, x), (2)

where the function f belongs to a class of functions defined on R+ and
satisfies some restrictive conditions .
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All along the mentioned paper the authors consider the subspace X1 of the
points in Rn which are the values of the bounded solutions for the equations

x′ = A(t)x (3)

at moment t = 0 and X2 ⊆ Rnis a supplementary subspace Rn = X1
⊕

X2.
The fundamental conditions which was interpolated in W.A. Coppel paper,

for equation (1) to have at least one bounded solution is the existence of
projectors P1 and P2 and a constant K > 0 such that

t∫
0

|X(t)P1X
−1(s)|ds +

∞∫
t

|X(t)P2X
−1(s)|ds ≤ K, (4)

when b ∈ C, {
|X(t)P1X

−1(s)| ≤ K, 0 ≤ s ≤ t
|X(t)P2X

−1(s)| ≤ K, 0 ≤ t ≤ s
, (5)

when b ∈ L1.
In their paper R. Conti and V.A. Staikos replaced conditions (4), and (5)

with

( t∫
0

|X(t)P1X
−1(s)|pds +

∞∫
t

|X(t)P2X
−1(s)|p

) 1
p

≤ K, (6)

for p ≥ 1 and

sup
0≤s≤t

|X(t)P1X
−1(s)|+ sup

t≤s≤∞
|X(t)P2X

−1(s)| ≤ K, (7)

for p = ∞.
In [6] Pavel Talpalaru consider the equation

x′ = A(t)x (8)

and the perturbed equation

y′ = A(t)y + f(t, y), (9)

where x, y, f are vectors in Rn, A(t) ∈ Mn×n,continuous in relation to t and y
for t ≥ t0, |y| < ∞.
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He demonstrated that under some conditions (see Theorem 2.1 from [7])
for all the bounded x(t) solutions of the equation (8) there exists at least one
y(t) bounded solution (9), such that the next relation take place :

lim
t→∞

|x(t)− y(t)| = 0. (10)

Next we introducing the notion of ϕ-contraction and comparison function
by:

Definition 1.1.[8]ϕ : R+ → R+ is a strict comparison function if ϕ
satisfies the following:

i) ϕ is continuous.
ii)ϕ is monotone increasing.
iii) lim

n→∞
ϕn(t) → 0, for all t > 0.

iv) t-ϕ(t) →∞,for t →∞.

Let (X, d) be a metric space and f : X → X an operator.

Definition 1.2.[8] The operator f is called a strict ϕ-contraction if:
(i) ϕ is a strict comparison function.
(ii)d(f(x), f(y)) ≤ ϕ(d(x, y)), for all x, y ∈ X.

In [8] I.A Rus give the following result:

Theorem 1.1.Let (X, d) be an complete metrical space , ϕ : R+ → R+

a comparison function and f : X → X a ϕ-contraction.Then f , is Picard
operator.

Next we using the following lema:

Lemma 1.1.[6] We suppose that X(t) is a continuous and invertible matrix
for t ≥ t0 and let P an projector;If there exists a constant K > 0 such that

{ t∫
t0

|X(t)PX−1(s)|q
} 1

q

≤ K for t ≥ t0, (11)

then there exists N > 0 such that

|X(t)P | ≤ Nexp(−qK−1t
1
q t1−

1
q ) for t ≥ t0 (12)
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2. Main results

Let t0 ≥ 0. We consider the equation:

x′(t) = A(t)x(t), t ≥ t0 (13)

and perturbed equation

y′(t) = A(t)y(t) + f(t, y(g(t))), t ≥ t0, (14)

under conditions:
(a) A ∈ Mn×n, continuous on [t0,∞);
(b) g : [t0,∞) → [t0,∞), continuous;
(c) f ∈ C([t0,∞)× S), where S = {y ∈ Rn | |y| < ∞}.

We note with Cα, the space of functions continuous and bounded defined
on [α,∞).

Theorem 2.1. Let X(t) be a fundamental matrix of equation (13). We
suppose that:
(i) There exists the projectors P1, P2 and a constant K > 0 such that

( t∫
t0

|X(t)P1X
−1(s)|qds +

∞∫
t

|X(t)P2X
−1(s)|qds

) 1
q

≤ K,

for t ≥ t0, q > 1;
(ii) There exists ϕ : R+ → R+, comparison function , and λ ∈ Lp([t0,∞) such
that

|f(t, y)− f(t, y)| ≤ λ(t)ϕ(|y − y|),
for all t ≥ t0, y, y ∈ S;
(iii) f(·, 0) ∈ Lp([t0,∞)).

Then, for every solution bounded x(t) of equation (13), there exists a unique
solution bounded y(t) of equation (14) such that

lim
t→∞

|x(t)− y(t)| = 0 (15)

Proof. For x ∈ Ct0 we consider the operator

Ty(t) = x(t)+

t∫
t0

|X(t)P1X
−1(s)|f(s, y(g(s)))ds−

∞∫
t

|X(t)P2X
−1(s)|f(s, y(g(s)))ds
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We show that the space Ct0 is invariant for the operator T .If y ∈ Ct0 , then

|f(t, y(g(t))| ≤ |f(t, y(g(t)))− f(t, 0)|+ |f(t, 0)| ≤ λ(t)ϕ(‖y‖) + |f(t, 0)|.

From: ∞∫
t0

|X(t)P2X
−1(s)f(s, y(g(s)))|ds ≤

≤ ϕ(‖y‖)
( ∞∫

t0

|X(t)P2X
−1(s)|qds

)1

q
( ∞∫

t0

λ(s)pds
) 1

p

+

+
( ∞∫

t0

|X(t)P2X
−1(s)|q

) 1
q
( ∞∫

t0

|f(s, 0)|p
) 1

p

≤

≤ Kϕ(‖y‖)
[( ∞∫

t0

λ(s)pds
) 1

p

+
( ∞∫

t0

|f(s, 0)|p
) 1

p
]

we have that the definition of T is corect .
Let x a bonded solution for the equation (13) and y ∈ Ct0 . Then:

|Ty(t)| ≤ |x(t)|+
t∫

t0

|X(t)P1X
−1(s)f(s, y(g(s)))|ds +

+

∞∫
t

|X(t)P2X
−1(s)f(s, y(g(s)))|ds ≤

≤ r+

t∫
t0

|X(t)P1X
−1(s)|·|f(s, y(g(s)))−f(s, 0|ds+

t∫
t0

|X(t)P1X
−1(s)|·|f(s, 0)|ds+

+

∞∫
t

|X(t)P2X
−1(s)|·|f(s, y(g(s)))−f(s, 0)|ds+

∞∫
t

|X(t)P2X
−1(s)|·|f(s, 0)|ds ≤

r + 2K
(
ϕ(‖y‖)

( ∞∫
t0

λ(s)pds
) 1

p

+
( ∞∫

t0

|f(s, 0)|p
) 1

p
)

< ∞

We show that the operator T is ϕ-contraction .

|Ty(t)− Ty(t)| ≤
t∫

t0

|X(t)P1X
−1(s)| · |f(s, y(g(s)))− f(s, y(g(s)))|ds+
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+

∞∫
t

|X(t)P2X
−1(s)| · |f(s, y(g(s)))− f(s, y(g(s)))|ds ≤

≤ 2K
( ∞∫

t0

λ(s)pds
) 1

p

ϕ(‖y − y‖)

We choose t0 such that
∞∫
t0

λ(s)pds ≤ 1
2K

.

From Theorem 1.1 we obtain that there exists a unique solutions of equation
(14).

Let y(t) be solution of (14) corespondent to x(t).Then

|x(t)− y(t)| ≤

≤
t∫

t0

|X(t)P1X
−1(s)f(s, y(g(s)))|ds+

∞∫
t

|X(t)P2X
−1(s)f(s, y(g(s)))|ds = I1+I2.

I1 =

t∫
t0

|X(t)P1X
−1(s)f(s, y(g(s)))|ds

≤
t1∫

t0

|X(t)P1X
−1(s)f(s, y(g(s)))|ds +

t∫
t1

|X(t)P1X
−1(s)f(s, y(g(s)))|ds ≤

≤ |X(t)P1|
t1∫

t0

|X−1(s)||f(s, y(g(s)))|ds+Kϕ(‖y‖)
( ∞∫

t1

λ(s)p
) 1

p

+K
( ∞∫

t1

|f(s, 0)|p
) 1

p

We choice t1 ≥ t0 such that
( ∞∫

t1

λ(s)p

) 1
p

≤ ε
3Kϕ(‖y‖ , and

( ∞∫
t1

|f(s, 0)|p
) 1

p

≤
ε

3K

By using lema (1.1), we obtain that I1 < ε.
For I2 we have:

I2 ≤
∞∫
t

|X(t)P2X
−1(s)||f(s, y(g(s)))−f(s, 0)|ds+

∞∫
t

|X(t)P2X
−1(s)||f(s, 0)|ds ≤

≤ Kϕ(‖y‖)
( ∞∫

t1

λ(s)p
) 1

p

+ K
( ∞∫

t1

|f(s, 0)|p
) 1

p

.
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