Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005-Alba Iulia, Romania

THE ASYMPTOTIC EQUIVALENCE OF THE DIFFERENTIAL EQUATIONS WITH MODIFIED ARGUMENT

Olaru Ion Marian

Abstract. This paper treats the asymptotic equivalence of the equations $x^{\prime}(t)=A(t) x(t)$ and $x^{\prime}(t)=A(t) x(t)+f(t, x(g(t)))$ using the notion of φ contraction.

2000 Mathematics Subject Classification: 34K05, 47H10.

1. Introduction

In 1964,W.A. Coppel [1] proposed an interesting application of Massera and Schäfer Theorem ([4],p. 530) obtaining the necessary and sufficient conditions for the existence of at least one solutions for the equations

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+b(t) \tag{1}
\end{equation*}
$$

for every $b(t)$ function.
More precisely, they consider $b \in C, C$ being the class of the continuous and bounded functions defined on $\mathbf{R}_{+}=[0, \infty)$ with the norm $\|b\|=\sup _{t \in \mathbf{R}_{+}}|b(t)|$, where $|\cdot|$ is the euclidian norm of \mathbf{R}^{n}.
W.A. Coppel $([2], \mathrm{Ch} . \mathrm{V})$ treated the case when $b \in L^{1}, L^{1}$ represents the Banach space of the Lebesgue integrable functions on \mathbf{R}_{+}with the norm $\|b\|_{L^{1}}=$ $\int_{\mathbf{R}_{+}}|b(t)| d t$.

Using W.A.Coppel method in 1966 R.Conti [3] studied the same problem for the particular case when $b \in L^{p}, 1 \leq p \leq \infty, L^{p}$ being the space of the functions with $|b(t)|^{p}$ integrable on \mathbf{R}_{+}with the norm $\|b\|_{L^{p}}=\left\{\int_{\mathbf{R}+}|b(t)|^{p} d t\right\}^{\frac{1}{p}}$.

In 1968, Vasilios A. Staikos [6] studied the equation:

$$
\begin{equation*}
x^{\prime}=A(t) x+f(t, x), \tag{2}
\end{equation*}
$$

where the function f belongs to a class of functions defined on \mathbf{R}_{+}and satisfies some restrictive conditions .

All along the mentioned paper the authors consider the subspace X_{1} of the points in \mathbf{R}^{n} which are the values of the bounded solutions for the equations

$$
\begin{equation*}
x^{\prime}=A(t) x \tag{3}
\end{equation*}
$$

at moment $t=0$ and $X_{2} \subseteq \mathbf{R}^{n}$ is a supplementary subspace $\mathbf{R}^{n}=X_{1} \oplus X_{2}$.
The fundamental conditions which was interpolated in W.A. Coppel paper, for equation (1) to have at least one bounded solution is the existence of projectors P_{1} and P_{2} and a constant $K>0$ such that

$$
\begin{equation*}
\int_{0}^{t}\left|X(t) P_{1} X^{-1}(s)\right| d s+\int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s)\right| d s \leq K \tag{4}
\end{equation*}
$$

when $b \in C$,

$$
\begin{cases}\left|X(t) P_{1} X^{-1}(s)\right| \leq K, & 0 \leq s \leq t \tag{5}\\ \left|X(t) P_{2} X^{-1}(s)\right| \leq K, & 0 \leq t \leq s\end{cases}
$$

when $b \in L^{1}$.
In their paper R. Conti and V.A. Staikos replaced conditions (4), and (5) with

$$
\begin{equation*}
\left(\int_{0}^{t}\left|X(t) P_{1} X^{-1}(s)\right|^{p} d s+\int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s)\right|^{p}\right)^{\frac{1}{p}} \leq K \tag{6}
\end{equation*}
$$

for $p \geq 1$ and

$$
\begin{equation*}
\sup _{0 \leq s \leq t}\left|X(t) P_{1} X^{-1}(s)\right|+\sup _{t \leq s \leq \infty}\left|X(t) P_{2} X^{-1}(s)\right| \leq K \tag{7}
\end{equation*}
$$

for $p=\infty$.
In [6] Pavel Talpalaru consider the equation

$$
\begin{equation*}
x^{\prime}=A(t) x \tag{8}
\end{equation*}
$$

and the perturbed equation

$$
\begin{equation*}
y^{\prime}=A(t) y+f(t, y), \tag{9}
\end{equation*}
$$

where x, y, f are vectors in $\mathbf{R}^{n}, A(t) \in M_{n \times n}$, continuous in relation to t and y for $t \geq t_{0},|y|<\infty$.

He demonstrated that under some conditions (see Theorem 2.1 from [7]) for all the bounded $x(t)$ solutions of the equation (8) there exists at least one $y(t)$ bounded solution (9), such that the next relation take place :

$$
\begin{equation*}
\lim _{t \rightarrow \infty}|x(t)-y(t)|=0 \tag{10}
\end{equation*}
$$

Next we introducing the notion of φ-contraction and comparison function by:

DEfinition 1.1.[8] $\varphi: R_{+} \rightarrow R_{+}$is a strict comparison function if φ satisfies the following:
i) φ is continuous.
ii) φ is monotone increasing.
iii) $\lim _{n \rightarrow \infty} \varphi^{n}(t) \rightarrow 0$, for all $t>0$.
iv) $t-\varphi(t) \rightarrow \infty$,for $t \rightarrow \infty$.

Let (X, d) be a metric space and $f: X \rightarrow X$ an operator.
Definition 1.2.[8] The operator f is called a strict φ-contraction if:
(i) φ is a strict comparison function.
(ii) $d(f(x), f(y)) \leq \varphi(d(x, y))$, for all $x, y \in X$.

In [8] I.A Rus give the following result:
THEOREM 1.1.Let (X, d) be an complete metrical space , $\varphi: R_{+} \rightarrow R_{+}$ a comparison function and $f: X \rightarrow X$ a φ-contraction. Then f, is Picard operator.

Next we using the following lema:
Lemma 1.1.[6] We suppose that $X(t)$ is a continuous and invertible matrix for $t \geq t_{0}$ and let P an projector; If there exists a constant $K>0$ such that

$$
\begin{equation*}
\left\{\int_{t_{0}}^{t}\left|X(t) P X^{-1}(s)\right|^{q}\right\}^{\frac{1}{q}} \leq K \text { for } t \geq t_{0} \tag{11}
\end{equation*}
$$

then there exists $N>0$ such that

$$
\begin{equation*}
|X(t) P| \leq N \exp \left(-q K^{-1} t^{\frac{1}{q}} t^{1-\frac{1}{q}}\right) \text { for } t \geq t_{0} \tag{12}
\end{equation*}
$$

2. Main Results

Let $t_{0} \geq 0$. We consider the equation:

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t), t \geq t_{0} \tag{13}
\end{equation*}
$$

and perturbed equation

$$
\begin{equation*}
y^{\prime}(t)=A(t) y(t)+f(t, y(g(t))), t \geq t_{0} \tag{14}
\end{equation*}
$$

under conditions:
(a) $A \in M_{n \times n}$, continuous on $\left[t_{0}, \infty\right)$;
(b) $g:\left[t_{0}, \infty\right) \rightarrow\left[t_{0}, \infty\right)$, continuous;
(c) $f \in C\left(\left[t_{0}, \infty\right) \times S\right)$, where $S=\left\{y \in \mathbf{R}^{n}| | y \mid<\infty\right\}$.

We note with C_{α}, the space of functions continuous and bounded defined on $[\alpha, \infty)$.

Theorem 2.1. Let $X(t)$ be a fundamental matrix of equation (13). We suppose that:
(i) There exists the projectors P_{1}, P_{2} and a constant $K>0$ such that

$$
\left(\int_{t_{0}}^{t}\left|X(t) P_{1} X^{-1}(s)\right|^{q} d s+\int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s)\right|^{q} d s\right)^{\frac{1}{q}} \leq K
$$

for $t \geq t_{0}, q>1$;
(ii) There exists $\varphi: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$, comparison function, and $\lambda \in L^{p}\left(\left[t_{0}, \infty\right)\right.$ such that

$$
|f(t, y)-f(t, y)| \leq \lambda(t) \varphi(|y-y|)
$$

for all $t \geq t_{0}, y, y \in S$;
(iii) $f(\cdot, 0) \in L^{p}\left(\left[t_{0}, \infty\right)\right)$.

Then, for every solution bounded $x(t)$ of equation (13), there exists a unique solution bounded $y(t)$ of equation (14) such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}|x(t)-y(t)|=0 \tag{15}
\end{equation*}
$$

Proof. For $x \in C_{t_{0}}$ we consider the operator
$T y(t)=x(t)+\int_{t_{0}}^{t}\left|X(t) P_{1} X^{-1}(s)\right| f(s, y(g(s))) d s-\int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s)\right| f(s, y(g(s))) d s$

We show that the space $C_{t_{0}}$ is invariant for the operator T.If $y \in C_{t_{0}}$, then

$$
\mid f(t, y(g(t))|\leq|f(t, y(g(t)))-f(t, 0)|+|f(t, 0)| \leq \lambda(t) \varphi(\|y\|)+|f(t, 0)|
$$

From:

$$
\begin{gathered}
\int_{t_{0}}^{\infty}\left|X(t) P_{2} X^{-1}(s) f(s, y(g(s)))\right| d s \leq \\
\leq \varphi(\|y\|)\left(\int_{t_{0}}^{\infty}\left|X(t) P_{2} X^{-1}(s)\right|^{q} d s\right)^{1} q\left(\int_{t_{0}}^{\infty} \lambda(s)^{p} d s\right)^{\frac{1}{p}}+ \\
+\left(\int_{t_{0}}^{\infty}\left|X(t) P_{2} X^{-1}(s)\right|^{q}\right)^{\frac{1}{q}}\left(\int_{t_{0}}^{\infty}|f(s, 0)|^{p}\right)^{\frac{1}{p}} \leq \\
\leq K \varphi(\|y\|)\left[\left(\int_{t_{0}}^{\infty} \lambda(s)^{p} d s\right)^{\frac{1}{p}}+\left(\int_{t_{0}}^{\infty}|f(s, 0)|^{p}\right)^{\frac{1}{p}}\right]
\end{gathered}
$$

we have that the definition of T is corect .
Let x a bonded solution for the equation (13) and $y \in C_{t_{0}}$. Then:

$$
\begin{gathered}
|T y(t)| \leq|x(t)|+\int_{t_{0}}^{t}\left|X(t) P_{1} X^{-1}(s) f(s, y(g(s)))\right| d s+ \\
+\int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s) f(s, y(g(s)))\right| d s \leq \\
\leq r+\int_{t_{0}}^{t}\left|X(t) P_{1} X^{-1}(s)\right| \cdot \mid f(s, y(g(s)))-f\left(s, 0\left|d s+\int_{t_{0}}^{t}\right| X(t) P_{1} X^{-1}(s)|\cdot| f(s, 0) \mid d s+\right. \\
+\int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s)\right| \cdot|f(s, y(g(s)))-f(s, 0)| d s+\int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s)\right| \cdot|f(s, 0)| d s \leq \\
r+2 K\left(\varphi(\|y\|)\left(\int_{t_{0}}^{\infty} \lambda(s)^{p} d s\right)^{\frac{1}{p}}+\left(\int_{t_{0}}^{\infty}|f(s, 0)|^{p}\right)^{\frac{1}{p}}\right)<\infty
\end{gathered}
$$

We show that the operator T is φ-contraction .

$$
|T y(t)-T \bar{y}(t)| \leq \int_{t_{0}}^{t}\left|X(t) P_{1} X^{-1}(s)\right| \cdot|f(s, y(g(s)))-f(s, \bar{y}(g(s)))| d s+
$$

$$
\begin{gathered}
+\int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s)\right| \cdot|f(s, y(g(s)))-f(s, \bar{y}(g(s)))| d s \leq \\
\leq 2 K\left(\int_{t_{0}}^{\infty} \lambda(s)^{p} d s\right)^{\frac{1}{p}} \varphi(\|y-\bar{y}\|)
\end{gathered}
$$

We choose t_{0} such that $\int_{t_{0}}^{\infty} \lambda(s)^{p} d s \leq \frac{1}{2 K}$.
From Theorem 1.1 we obtain that there exists a unique solutions of equation (14).

Let $y(t)$ be solution of (14) corespondent to $x(t)$.Then

$$
\begin{gathered}
|x(t)-y(t)| \leq \\
\leq \int_{t_{0}}^{t}\left|X(t) P_{1} X^{-1}(s) f(s, y(g(s)))\right| d s+\int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s) f(s, y(g(s)))\right| d s=I_{1}+I_{2} \\
I_{1}=\int_{t_{0}}^{t}\left|X(t) P_{1} X^{-1}(s) f(s, y(g(s)))\right| d s \\
\leq \int_{t_{0}}^{t_{1}}\left|X(t) P_{1} X^{-1}(s) f(s, y(g(s)))\right| d s+\int_{t_{1}}^{t}\left|X(t) P_{1} X^{-1}(s) f(s, y(g(s)))\right| d s \leq \\
\leq\left|X(t) P_{1}\right| \int_{t_{0}}^{t_{1}}\left|X^{-1}(s)\right||f(s, y(g(s)))| d s+K \varphi(\|y\|)\left(\int_{t_{1}}^{\infty} \lambda(s)^{p}\right)^{\frac{1}{p}}+K\left(\int_{t_{1}}^{\infty}|f(s, 0)|^{p}\right)^{\frac{1}{p}}
\end{gathered}
$$

We choice $t_{1} \geq t_{0}$ such that $\left(\int_{t_{1}}^{\infty} \lambda(s)^{p}\right)^{\frac{1}{p}} \leq \frac{\varepsilon}{3 K \varphi(\|y\|)}$, and $\left(\int_{t_{1}}^{\infty}|f(s, 0)|^{p}\right)^{\frac{1}{p}} \leq$ $\frac{\varepsilon}{3 K}$

By using lema (1.1), we obtain that $I_{1}<\varepsilon$.
For I_{2} we have:

$$
\begin{gathered}
I_{2} \leq \int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s)\right||f(s, y(g(s)))-f(s, 0)| d s+\int_{t}^{\infty}\left|X(t) P_{2} X^{-1}(s) \| f(s, 0)\right| d s \leq \\
\leq K \varphi(\|y\|)\left(\int_{t_{1}}^{\infty} \lambda(s)^{p}\right)^{\frac{1}{p}}+K\left(\int_{t_{1}}^{\infty}|f(s, 0)|^{p}\right)^{\frac{1}{p}} .
\end{gathered}
$$

References

[1] W.A. Coppel, On the stability of ordinary differential equations,J. London Math. Soc,39 (1964),pp255-260.
[2] W.A. Coppel, Stability and asymptotic behavior of differential equations, Heath Math. Monographs Boston,1965.
[3] R.Conti, On the boundlessness of solutions of differential equations, Funkcialaj Ekvacioj ,9 (1966), pp 23-26.
[4]J.L. Massera,J.J Scäffer, Linear differential equations and functional analysis,Annals of Math., 67(1958),pp 517-573.
[5] I.A. Rus, Princiipii si aplicatii ale teoriei punctului fix ,Editura Dacia ,Cluj-Napoca,1979.
[6] V.A. Staikos, A note on the boundens of solutions of ordinary differential equations ,Boll.U.M.I, S IV ,1 (1968), pp 256-261.
[7]Pavel Talpararu, Quelques problemes concernant l'equivalence asymptotique des systemes differentiels ,Boll. U.M.I (4)1971 pp 164-186.
[8]I.A.Rus, Generalized contractions, Seminar on fixed point theory,No 3,1983,1130.

Olaru Ion Marian
Department of Mathematics
University of Sibiu
Address Str.Dr I.Ratiu No 5-7
email:olaruim@yahoo.com

