NEW SOLUTIONS FOR YANG-BAXTER SYSTEMS

Florin Felix Nichita

2000 Mathematics Subject Classification: 16W30, 13B02
Abstract. We present the concepts of Yang-Baxter equation and its generalisation, the Yang-Baxter system. We construct new Yang-Baxter systems from algebra and bialgebra structures.

1.Introduction

In a previuos talk at ICTAMI-2002 conference, we introduced the concept of Yang-Baxter system. In this paper, which follows a talk at ICTAMI-2005 conference, we first review the concepts of Yang-Baxter equation and its generalisation, the Yang-Baxter system. We present briefly the concepts of algebras, coalgebras and bialgebras. [12] and [4]constructed Yang-Baxter operators from algebras and coalgebras. The following question arises: What is the relation between those operators if we start with a bialgebra ? One answer is that they are connected via a Yang-Baxter system (see theorem 6.2). Another Yang-Baxter system is constructed directly from an algebra structure.

2.The Yang-Baxter equation

The Yang-Baxter equation first appeared in theoretical physics and statistical mechanics. Afterwards, it has proved to be important in knot theory, quantum groups, the quantization of integrable non-linear evolution systems, etc.

Throughout this paper k is a field. All tensor products appearing in this paper are defined over k.

Let V be a k-space. We denote by $\tau: V \otimes V \rightarrow V \otimes V$ the twist map defined by $\tau(v \otimes w)=w \otimes v$.

We use the following terminology concerning the Yang-Baxter equation.

Some references on this topic are: [8], [9],[10],[11] etc.
Let $R: V \otimes V \rightarrow V \otimes V$ be a k-linear map. We use the following notations: $R^{12}=R \otimes I, R^{23}=I \otimes R, R^{13}=(I \otimes \tau)(R \otimes I)(I \otimes \tau)$, where I_{V} or simply I is the identity map of the space V .

Definition 2.1 An invertible k-linear map $R: V \otimes V \rightarrow V \otimes V$ is called a Yang-Baxter operator (or simply a YB operator) if it satisfies the equation

$$
\begin{equation*}
R^{12} \circ R^{23} \circ R^{12}=R^{23} \circ R^{12} \circ R^{23} \tag{1}
\end{equation*}
$$

Remark 2.2.The equation (1) is usually called the braid equation. It is a well-known fact that the operator R satisfies (1) if and only if $R \circ \tau$ satisfies the quantum Yang-Baxter equation (if and only if $\tau \circ R$ satisfies the quantum Yang-Baxter equation):

$$
\begin{equation*}
R^{12} \circ R^{13} \circ R^{23}=R^{23} \circ R^{13} \circ R^{12} \tag{2}
\end{equation*}
$$

Remark 2.3.i) $\tau: V \otimes V \rightarrow V \otimes V$ is an example of a $Y B$ operator.
ii) An exhaustive list of invertible solutions for (2) in dimension 2 is given in [5].
iii) Finding all Yang-Baxter operators in dimension greater then 2 is an unsolved problem.

3. Yang-Baxter systems

It is convenient to introduce the following notation from [7]: the YangBaxter commutator $[R, S, T]$ of the maps $R: V \otimes V^{\prime} \rightarrow V \otimes V^{\prime}, S: V \otimes V^{\prime \prime} \rightarrow$ $V \otimes V^{\prime \prime}$ and $T: V^{\prime} \otimes V^{\prime \prime} \rightarrow V^{\prime} \otimes V^{\prime \prime}$ is a map $[R, S, T]: V \otimes V^{\prime} \otimes V^{\prime \prime} \rightarrow V \otimes V^{\prime} \otimes V^{\prime \prime}$, such that

$$
\begin{equation*}
[R, S, T]=R^{12} \circ S^{13} \circ T^{23}-T^{23} \circ S^{13} \circ R^{12} \tag{3}
\end{equation*}
$$

In this notation the quantum Yang-Baxter equation is written as:

$$
\begin{equation*}
[R, R, R]=0 \tag{4}
\end{equation*}
$$

Definition 3.1. The following system of equations is called a WXZ system (or a Yang-Baxter system):

$$
\begin{align*}
& {[W, W, W]=0} \tag{5}\\
& {[Z, Z, Z]=0} \tag{6}\\
& {[W, X, X]=0} \tag{7}\\
& {[X, X, Z]=0} \tag{8}
\end{align*}
$$

where $W: V \otimes V \rightarrow V \otimes V, Z: V^{\prime} \otimes V^{\prime} \rightarrow V^{\prime} \otimes V^{\prime}$ and $X: V \otimes V^{\prime} \rightarrow V \otimes V^{\prime}$.
Remark 3.2. A $W X Z$ system is a constant version of the spectral dependent Yang-Baxter systems for nonultralocal models presented in [6].

Remark 3.3. A $W X Z$ system is also related to the method of obtaining the quantum doubles for pairs of FRT quantum groups (see [15]).

Remark 3.4. From a WXZ system with X invertible, one can construct a Yang-Baxter operator (see theorem 2.7 of [11]).

Remark 3.5. For examples and the classification of WXZ systems in dimension two $\left(\operatorname{dim}_{k} V=\operatorname{dim}_{k} V^{\prime}=2\right)$, see [7].

4.Algebras, coalgebras and bialgebras

In this section we present briefly the concepts of algebras, coalgebras and bialgebras. For more details we refer to [1], [3] or [14].

Definition 4.1.A k-algebra is a k-space A with k-linear maps $M: A \otimes$ $A \rightarrow A$ and $u: k \rightarrow A$ called (associative) product and unit, respectively, with properties $M \circ\left(M \otimes I_{A}\right)=M \circ\left(I_{A} \otimes M\right)$, and $M \circ\left(I_{A} \otimes u\right)=I_{A}=$ $M \circ\left(u \otimes I_{A}\right)$.

Definition 4.2.A k-coalgebra is a k-space C with k-linear maps $\Delta: C \rightarrow$ $C \otimes C$ and $\epsilon: C \rightarrow k$ called (coassociative) coproduct and counit, respectively, with properties $\left(I_{C} \otimes \Delta\right) \circ \Delta=\left(\Delta \otimes I_{C}\right) \circ \Delta$, and $\left(I_{C} \otimes \epsilon\right) \circ \Delta=I_{C}=\left(\epsilon \otimes I_{C}\right) \circ \Delta$.

Example. Let S be a set. Let $k S$ be a k-space with S as a basis. Define $\Delta: k S \rightarrow k S \otimes k S, \Delta(s)=s \otimes s \forall s \in S, \epsilon: k S \rightarrow k, \epsilon(s)=1 \forall s \in S$. Then $k S$ is a coalgebra.

Notation. For C a coalgebra and $c \in C$, we use Sweedler's notation: $\Delta(c)=\sum_{(c)} c_{1} \otimes c_{2}$.

Definition 4.3.A k-space B that is an algebra (B, M, u) and a coalgebra (B, Δ, ϵ) is called a bialgebra if Δ and ϵ are algebra morphisms or, equivalently, M and u are coalgebra morphisms.

5.Yang-Baxter operators from (co)algebra structures

Let A be a k-algebra, and $\alpha, \beta, \gamma \in k$. We define the k-linear map:

$$
R_{\alpha, \beta, \gamma}^{A}: A \otimes A \rightarrow A \otimes A, \quad R_{\alpha, \beta, \gamma}^{A}(a \otimes b)=\alpha a b \otimes 1+\beta 1 \otimes a b-\gamma a \otimes b .
$$

Theorem 5.1. (S. Dăscălescu and F. F. Nichita, [4]) Let A be a k-algebra with $\operatorname{dim} A \geq 2$, and $\alpha, \beta, \gamma \in k$. Then $R_{\alpha, \beta, \gamma}^{A}$ is a $Y B$ operator if and only if one of the following holds:
(i) $\alpha=\gamma \neq 0, \quad \beta \neq 0$;
(ii) $\beta=\gamma \neq 0, \quad \alpha \neq 0$;
(iii) $\alpha=\beta=0, \quad \gamma \neq 0$.

If so, we have $\left(R_{\alpha, \beta, \gamma}^{A}\right)^{-1}=R_{\frac{1}{\beta}, \frac{1}{\alpha}, \frac{1}{\gamma}}^{A}$ in cases (i) and (ii), and $\left(R_{0,0, \gamma}^{A}\right)^{-1}=$ $R_{0,0, \frac{1}{\gamma}}^{A}$ in case (iii).

REmARK 5.2.The previous theorem can be transfered to coalgebras (see [4]).

Let C be a k-coalgebra with $\operatorname{dim} C \geq 2$, and $\alpha, \beta, \gamma \in k$. We define the k-linear map $R_{\alpha, \beta, \gamma}^{C}: C \otimes C \rightarrow C \otimes C, \quad R_{\alpha, \beta, \gamma}^{C}(c \otimes d)=\alpha \epsilon(d) \Delta(c)+\beta \epsilon(c) \Delta(d)-$ $\gamma c \otimes d$.

Then $R_{\alpha, \beta, \gamma}^{C}$ is a YB operator if and only if one of the following holds:
(i) $\alpha=\gamma \neq 0, \quad \beta \neq 0$;
(ii) $\beta=\gamma \neq 0, \quad \alpha \neq 0$;
(iii) $\alpha=\beta=0, \quad \gamma \neq 0$.

If so, we have $\left(R_{\alpha, \beta, \gamma}^{C}\right)^{-1}=R_{\frac{1}{\beta}, \frac{1}{\alpha}, \frac{1}{\gamma}}^{C}$ in cases (i) and (ii), and $\left(R_{0,0, \gamma}^{C}\right)^{-1}=$ $R_{0,0, \frac{1}{\gamma}}^{C}$ in case (iii).

6. Yang-Baxter systems from algebra and bialgebra structures

Theorem 6.1. (F. F. Nichita and D. Parashar, [13]) Let A be a k-algebra, and $\lambda, \mu \in k$. The following is a Yang-Baxter system:
$W: A \otimes A \rightarrow A \otimes A, \quad W(a \otimes b)=a b \otimes 1+\lambda 1 \otimes a b-b \otimes a$,
$Z: A \otimes A \rightarrow A \otimes A, \quad Z(a \otimes b)=\mu a b \otimes 1+1 \otimes a b-b \otimes a$,
$X: A \otimes A \rightarrow A \otimes A, \quad X(a \otimes b)=a b \otimes 1+1 \otimes a b-b \otimes a$.
Theorem 6.2. Let B be a k-bialgebra, and $r, s, p, t \in k$. The following is a Yang-Baxter system:
$W: B \otimes B \rightarrow B \otimes B, \quad W(a \otimes b)=s b a \otimes 1+r 1 \otimes b a-s b \otimes a$
$X: B \otimes B \rightarrow B \otimes B, \quad X(a \otimes c)=\sum_{a} a_{1} \otimes c a_{2}$
$Z: B \otimes B \rightarrow B \otimes B, \quad Z(b \otimes c)=t \epsilon(b) \sum_{(c)} c_{1} \otimes c_{2}+p \epsilon(c) \sum_{(b)} b_{1} \otimes b_{2}-p c \otimes b$
Proof. We present a direct proof. Another proof can be obtained as a consequence of the theory developed in [2].
$[W, W, W]=0$ and $[Z, Z, Z]=0$ follow from section 5.
$[W, X, X]=0 \Longleftrightarrow W^{12} \circ X^{13} \circ X^{23}=X^{23} \circ X^{13} \circ W^{12}$
$W_{12} \circ X_{13} \circ X_{23}(a \otimes b \otimes c)=W_{12} \circ X_{13}\left(\sum_{(b)} a \otimes b_{1} \otimes c b_{2}\right)=W_{12}\left(\sum_{(a),(b)} a_{1} \otimes b_{1} \otimes\right.$ $\left.\left(c b_{2}\right) a_{2}\right)=s \sum_{(a),(b)} b_{1} a_{1} \otimes 1 \otimes\left(c b_{2}\right) a_{2}+r \sum_{(a),(b)} 1 \otimes b_{1} a_{1} \otimes\left(c b_{2}\right) a_{2}-s \sum_{(a),(b)} b_{1} \otimes$ $a_{1} \otimes\left(c b_{2}\right) a_{2}$
$X_{23} \circ X_{13} \circ W_{12}(a \otimes b \otimes c)=X_{23} \circ X_{13}(s b a \otimes 1 \otimes c+r 1 \otimes b a \otimes c-s b \otimes$ $a \otimes c)=X_{23}\left(s \sum_{(b a)}(b a)_{1} \otimes 1 \otimes c(b a)_{2}+r 1 \otimes b a \otimes c-s \sum_{(b)} b_{1} \otimes a \otimes c b_{2}\right)=$ $s \sum_{(b a)}(b a)_{1} \otimes 1 \otimes c(b a)_{2}+r \sum_{(b a)} 1 \otimes(b a)_{1} \otimes c(b a)_{2}-s \sum_{(a),(b)} b_{1} \otimes a_{1} \otimes\left(c b_{2}\right) a_{2}=$ $s \sum_{(a),(b)} b_{1} a_{1} \otimes 1 \otimes c\left(b_{2} a_{2}\right)+r \sum_{(a),(b)} 1 \otimes b_{1} a_{1} \otimes c\left(b_{2} a_{2}\right)-s \sum_{(a),(b)} b_{1} \otimes a_{1} \otimes\left(c b_{2}\right) a_{2}$

The last equality holds because we work with a bialgebra.
Thus, $W_{12} \circ X_{13} \circ X_{23}(a \otimes b \otimes c)=X_{23} \circ X_{13} \circ W_{12}(a \otimes b \otimes c)$

$$
\begin{aligned}
& \quad[X, X, Z]=0 \Longleftrightarrow X^{12} \circ X^{13} \circ Z^{23}=Z^{23} \circ X^{13} \circ X^{12} \\
& \quad X^{12} \circ X^{13} \circ Z^{23}(a \otimes b \otimes c)=X^{12} \circ X^{13}\left(t \epsilon(b) \sum_{(c)} a \otimes c_{1} \otimes c_{2}+p \epsilon(c) \sum_{(b)} a \otimes\right. \\
& \left.b_{1} \otimes b_{2}-p a \otimes c \otimes b\right)=X^{12}\left(t \epsilon(b) \sum_{(a),(c)} a_{1} \otimes c_{1} \otimes c_{2} a_{2}+p \epsilon(c) \sum_{(a),(b)} a_{1} \otimes b_{1} \otimes\right. \\
& \left.b_{2} a_{2}-p \sum_{a} a_{1} \otimes c \otimes b a_{2}\right)=t \epsilon(b) \sum_{(a),(c)} a_{1} \otimes c_{1} a_{2} \otimes c_{2} a_{3}+p \epsilon(c) \sum_{(a),(b)} a_{1} \otimes \\
& b_{1} a_{2} \otimes b_{2} a_{3}-p \sum_{a} a_{1} \otimes c a_{2} \otimes b a_{3} \\
& Z^{23} \circ X^{13} \circ X^{12}(a \otimes b \otimes c)=Z^{23} \circ X^{13}\left(\sum_{(a)} a_{1} \otimes b a_{2} \otimes c\right)=Z^{23}\left(\sum_{(a)} a_{1} \otimes\right. \\
& \left.b a_{3} \otimes c a_{2}\right)=t \epsilon\left(b a_{4}\right) \sum_{(a),(c)} a_{1} \otimes c_{1} a_{2} \otimes c_{2} a_{3}+p \epsilon\left(c a_{2}\right) \sum_{(a),(b)} a_{1} \otimes b_{1} a_{3} \otimes b_{2} a_{4}- \\
& p \sum_{(a)} a_{1} \otimes c_{2} \otimes b a_{3}=t \epsilon(b) \sum_{(a),(c)} a_{1} \otimes c_{1} a_{2} \otimes c_{2} a_{3}+p \epsilon(c) \sum_{(a),(b)} a_{1} \otimes b_{1} a_{2} \otimes \\
& b_{2} a_{3}-p \sum_{a} a_{1} \otimes c a_{2} \otimes b a_{3} \\
& \quad \text { The last equality holds because we work with a bialgebra. }
\end{aligned}
$$

Thus, $X^{12} \circ X^{13} \circ Z^{23}(a \otimes b \otimes c)=Z^{23} \circ X^{13} \circ X^{12}(a \otimes b \otimes c)$.
Remark 6.3. In theorem 6.2, if B is a Hopf algebra then X is invertible. A large class of Yang-Baxter operators can be obtained in this case using remark 3.4 .

Remark 6.4. Theorem 6.2 was generalised in [2]. Thus, one can construct Yang-Baxter systems from entwining structures. A reciprocal of this theorem also works.

ACKNOWLEDGEMENTS

The author would like to thank Prof. Sorin Dăscălescu for valuable comments.

References

[1] T. Brzezinski and R. Wisbauer, Corings and Comodules, London Math. Soc. Lecture Note Series 309, Cambridge University Press, Cambridge (2003).
[2] T. Brzezinski and F. F. Nichita, Yang-Baxter systems and entwining structures, to appear in Comm. Algebra.
[3] S. Dăscălescu, C. Năstăsescu and S. Raianu, Hopf Algebras. An Introduction, Marcel Dekker, New York-Basel (2001).
[4] S. Dăscălescu and F. F. Nichita, Yang-Baxter operators arising from (co)algebra structures, Comm. Algebra 27 (1999), 5833-5845.
[5] J. Hietarinta, All solutions to the constant quantum Yang-Baxter equation in two dimensions, Phys. Lett. A 165 (1992), 245-251.
[6] L. Hlavaty and A. Kundu, Quantum integrability of nonultralocal models through Baxterization of quantised braided algebra Int.J. Mod.Phys. A, 11(12):2143-2165, 1996.
[7] L. Hlavaty and L. Snobl, Solution of a Yang-Baxter system, math.QA/9811016v2.
[8] C. Kassel, Quantum Groups, Graduate Texts in Mathematics 155 (1995), Springer Verlag.
[9] L. Lambe and D. Radford, Introduction to the quantum Yang-Baxter equation and quantum groups: an algebraic approach. Mathematics and its Applications, 423. Kluwer Academic Publishers, Dordrecht, 1997.
[10] R.G. Larson and J. Towber, Two dual classes of bialgebras related to the concept of "quantum groups" and "quantum Lie algebra". Comm. Algebra 19(1991), 3295-3345. [11] S. Majid and M. Markl, Glueing operations for R-Matrices, Quantum Groups and Link-Invariants of Hecke Type arXiv:hepth/9308072.
[12] F. F. Nichita, Self-inverse Yang-Baxter operators from (co)algebra structures. J. Algebra 218 (1999), 738-759.
[13] F. F. Nichita and D. Parashar, Spectral-parameter dependent YangBaxter operators and Yang-Baxter systems from algebra structures, preprint.
[14] M. E. Sweedler, Hopf Algebras, Benjamin, New York (1969).
[15] A. A. Vladimirov, A method for obtaining quantum doubles from the Yang-Baxter R-matrices. Mod. Phys. Lett. A, 8:1315-1321, 1993.

Florin Felix Nichita
Institute of Mathematics of the Romanian Academy
email:Florin.Nichita@imar.ro

