Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

SOME OBSERVATIONS ON A CLASS OF D-LINEAR CONNECTIONS ON THE TANGENT BUNDLE

Monica Purcaru and Mirela Târnoveanu

ABSTRACT. The present paper deals with some problems on the conformal structure on TM. The concepts of conformal structure and d-linear connection compatible with the conformal structure, corresponding to two 1-forms are introduced in the tangent bundle. The problem of determining the set of all d-linear connections compatible with the conformal structure, corresponding to two 1-forms is solved for an arbitrary nonlinear connection. Some important particular cases are considered.

2000 Subject Classification:53C05, 53C15, 53C21, 53C60, 53B05, 53B35, 53B40.

Keywords and phrases:tangent bundle, conformal structure, d-linear connection compatible with the conformal structure, corresponding to two 1-forms.

1. Preliminaries

The geometry of the tangent bundle (TM, π, M) has been studied by M. Matsumoto in [4], by R. Miron and M. Anastasiei in [5], [6], by R. Miron and M. Hashiguchi in [7], by V. Oproiu in [8], by Gh. Atanasiu and I. Ghinea in [1], by R. Bowman in [2], by K. Yano and S. Ishihara in [10], etc. Concerning the terminology and notations, we use those from [6].

Let M be a real n-dimensional C^{∞} -differentiable manifold and (TM, π, M) its tangent bundle.

If (x^i) is a local coordinates system on a domain U of a chart on M, the induced system of coordinates on $\pi^{-1}(U)$ is $(x^i, y^i), (i = 1, ..., n)$.

Let N be a nonlinear connection on TM, with the coefficients $N^{i}_{j}(x, y), (i, j = 1, ..., n)$.

2. The notion of d- linear connection compatible with a conformal structure

We consider on TM a metrical (almost symplectic) structure G defined by:

$$G(x,y) = \frac{1}{2}g_{ij}(x,y)dx^i \wedge dx^j + \frac{1}{2}\tilde{g}_{ij}(x,y)\delta y^i \wedge \delta y^j, \qquad (1)$$

where $(dx^i, \delta y^i)$, (i = 1, ..., n) is the dual basis of $\left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^i}\right)$, and $(g_{ij}(x, y), \tilde{g}_{ij}(x, y))$ is a pair of given d-tensor fields on TM, of the type (0,2), each of them nondegenerate and symmetric (alternate), in the last case it is necessary that n=2n'.

We associate to the lift G the Obata's operators:

$$\begin{cases} \Omega_{sj}^{ir} = \frac{1}{2} (\delta_s^i \delta_j^r - g_{sj} g^{ir}), \ \Omega_{sj}^{*ir} = \frac{1}{2} (\delta_s^i \delta_j^r + g_{sj} g^{ir}), \\ \tilde{\Omega}_{sj}^{ir} = \frac{1}{2} (\delta_s^i \delta_j^r - \tilde{g}_{sj} \tilde{g}^{ir}), \ \tilde{\Omega}_{sj}^{*ir} = \frac{1}{2} (\delta_s^i \delta_j^r + \tilde{g}_{sj} \tilde{g}^{ir}). \end{cases}$$
(2)

Obata's operators have the same properties as the ones associated with a Finsler space [7].

Let $S_2(TM)$ be the set of all symmetric d-tensor fields, of the type (0,2) on TM ($\mathcal{A}_2(TM)$) be the set of all alternate d-tensor fields, of the type (0,2) on TM). As is easily shown, the relations on $S_2(TM)$ ($\mathcal{A}_2(TM)$) defined by (3):

$$\begin{cases} (a_{ij} \sim b_{ij}) \Leftrightarrow \left((\exists) \lambda(x, y) \in \mathcal{F}(TM), a_{ij}(x, y) = e^{2\lambda(x, y)} b_{ij}(x, y) \right), \\ \left(\tilde{a}_{ij} \sim \tilde{b}_{ij} \right) \Leftrightarrow \left((\exists) \mu(x, y) \in \mathcal{F}(TM), \tilde{a}_{ij}(x, y) = e^{2\mu(x, y)} \tilde{b}_{ij}(x, y) \right), \end{cases}$$
(3)

is an equivalence relation on $\mathcal{S}_2(TM)$ ($\mathcal{A}_2(TM)$).

THEOREM 1. The equivalent class: \hat{G} of $S_2(TM)/_{\sim}$ ($A_2(TM)/_{\sim}$) to which the metrical (almost symplectic) tensor field G belongs, is called conformal structure on TM.

Thus:

$$\hat{G} = \{G'|G'_{ij}(x,y) = e^{2\lambda(x,y)}g_{ij}(x,y) \text{ and } \tilde{G}'_{ij}(x,y) = e^{2\mu(x,y)}\tilde{g}_{ij}(x,y)\}.$$
 (4)

DEFINITION 1. A d-linear connection, D, on TM, with local coefficients $D\Gamma(N) = (L^i_{\ jk}, \tilde{L}^i_{\ jk}, \tilde{C}^i_{\ jk}, C^i_{\ jk})$, for which there exists the 1-forms ω and $\tilde{\omega}$ on

$$TM:$$

$$\omega = \omega_i dx^i + \dot{\omega}_i \delta y^i, \quad \tilde{\omega} = \tilde{\omega}_i dx^i + \dot{\tilde{\omega}}_i \delta y^i \text{ such that:}$$

$$\begin{cases} g_{ij|k} = 2\omega_k g_{ij}, \quad g_{ij}|_k = 2\dot{\omega}_k g_{ij}, \\ \tilde{g}_{ij|k} = 2\tilde{\omega}_k \tilde{g}_{ij}, \quad \tilde{g}_{ij}|_k = 2\dot{\tilde{\omega}}_k \tilde{g}_{ij}, \end{cases}$$
(5)

where | and | denote the h-and v-covariant derivatives with respect to D, is said to be compatible with the conformal structure \hat{G} , corresponding to the 1-forms $\omega, \tilde{\omega}$ and is denoted by: $D\Gamma(N, \omega, \tilde{\omega})$.

3. The set of all D- linear connections compatible with the conformal structure \hat{G} , corresponding to two 1-forms

Let $\overset{0}{N}$ and N be two nonlinear connections on TM, with the coefficients $(\overset{0}{N_{(1)}}_{j}^{i}, \overset{0}{N_{(2)}}_{j}^{i})$ and $(\overset{0}{N_{(1)}}_{j}^{i}, \overset{0}{N_{(2)}}_{j}^{i})$ respectively. Let $\overset{0}{D}\Gamma(\overset{0}{N}) = (\overset{0}{L_{jk}^{i}}, \overset{0}{L_{jk}^{i}}, \overset{0}{C_{jk}^{i}}, \overset{0}{C_{jk}^{i}})$ be the local coefficients of a fixed d-

Let $D^{0}\Gamma(N) = (L^{i}_{jk}, \tilde{L}^{i}_{jk}, \tilde{C}^{i}_{jk}, \tilde{C}^{i}_{jk}, \tilde{C}^{i}_{jk})$ be the local coefficients of a fixed dlinear connection D^{0} on TM. Then any d-linear connection, D, on TM, with local coefficients: $D\Gamma(N) = (L^{i}_{jk}, \tilde{L}^{i}_{jk}, \tilde{C}^{i}_{jk}, C^{i}_{jk})$, can be expressed in the form:

where $(A_{j}^{i}, B_{jk}^{i}, \tilde{B}_{jk}^{i}, \tilde{D}_{jk}^{i}, D_{jk}^{i})$ are components of the difference tensor fields of $D\Gamma(N)$ from $\stackrel{0}{D}\Gamma(\stackrel{0}{N})$, [4] and $\stackrel{0}{l}, \stackrel{0}{l}$ denotes the h-and v-covariant derivatives with respect to $\stackrel{0}{D}$.

Using a well known method given by R.Miron in [5] for the case of the Finsler connections we obtain:

THEOREM 2.Let $\overset{0}{D}$ be a given d-linear connection on TM, with local coefficients $\overset{0}{D}\Gamma(\overset{0}{N}) = (\overset{0}{L_{jk}^{i}}, \overset{0}{\tilde{L}_{jk}^{i}}, \overset{0}{\tilde{C}_{jk}^{i}}, \overset{0}{C_{jk}^{i}})$. Then set of all d-linear connections compatible with the conformal structure \hat{G} , corresponding to the 1-forms ω and $\tilde{\omega}$, with local coefficients $D\Gamma(N, \omega, \tilde{\omega}) = (L_{jk}^{i}, \tilde{L}_{jk}^{i}, \tilde{C}_{jk}^{i}, C_{jk}^{i})$ is given by:

$$\begin{cases} N_{j}^{i} = N_{j}^{0} - X_{j}^{i}, \\ L_{jk}^{i} = L_{jk}^{i} + \tilde{C}_{jm}^{i} X_{k}^{m} + \frac{1}{2}g^{is}(g_{sj|k}^{0} + g_{sj} \Big|_{m}^{0} X_{k}^{m}) - \delta_{j}^{i}\omega_{k} + \Omega_{hj}^{ir}X_{rk}^{h}, \\ \tilde{L}_{jk}^{i} = \tilde{L}_{jk}^{0} + C_{jm}^{0} X_{k}^{m} + \frac{1}{2}\tilde{g}^{is}(\tilde{g}_{sj|k}^{0} + \tilde{g}_{sj} \Big|_{m}^{0} X_{k}^{m}) - \delta_{j}^{i}\tilde{\omega}_{k} + \tilde{\Omega}_{hj}^{ir}\tilde{X}_{rk}^{h}, \\ \tilde{C}_{jk}^{i} = \tilde{C}_{jk}^{0} + \frac{1}{2}g^{is}g_{sj} \Big|_{k}^{0} - \delta_{j}^{i}\dot{\omega}_{k} + \Omega_{hj}^{ir}\tilde{Y}_{rk}^{h}, \\ C_{jk}^{i} = C_{jk}^{i} + \frac{1}{2}\tilde{g}^{is}\tilde{g}_{sj} \Big|_{k}^{0} - \delta_{j}^{i}\dot{\omega}_{k} + \tilde{\Omega}_{hj}^{ir}Y_{rk}^{h}, \\ X_{j|k}^{i} = 0, \end{cases}$$

$$(7)$$

where X_{j}^{i} , X_{jk}^{i} , \tilde{X}_{jk}^{i} , \tilde{Y}_{jk}^{i} , Y_{jk}^{i} are arbitrary tensor fields on TM, $\omega = \omega_{i}dx^{i} + \dot{\omega}_{i}\delta y^{i}$ and respective $\tilde{\omega} = \tilde{\omega}_{i}dx_{i} + \dot{\omega}_{i}\delta y^{i}$ are arbitrary 1-forms in TMand $\overset{0}{l}, \overset{0}{l}$ denote the h-and respective v-covariant derivatives with respect to $\overset{0}{D}$.

PARTICULAR CASES

1. If $X^i_{\ j} = X^i_{\ jk} = \tilde{X}^i_{\ jk} = \tilde{Y}^i_{\ jk} = Y^i_{\ jk} = 0$ in Theorem 2, we have:

THEOREM 3. Let $\overset{0}{D}$ be a given d-linear connection on TM, with local coefficients $\overset{0}{D}\Gamma(\overset{0}{N}) = (\overset{0}{L^{i}}_{jk}, \tilde{L}^{i}_{jk}, \tilde{C}^{i}_{jk}, C^{i}_{jk})$. Then the following d-linear connection D, with local coefficients $D\Gamma(\overset{0}{N}, \omega, \tilde{\omega}) = (L^{i}_{jk}, \tilde{L}^{i}_{jk}, \tilde{C}^{i}_{jk}, C^{i}_{jk})$ given by (8) is compatible with the conformal structure \hat{G} , corresponding to the 1-forms ω and $\tilde{\omega}$:

$$L_{jk}^{i} = L_{jk}^{0} + \frac{1}{2}g^{is}g_{sj|k}^{0} - \delta_{j}^{i}\omega_{k},$$

$$\tilde{L}_{jk}^{i} = \tilde{L}_{jk}^{0} + \frac{1}{2}\tilde{g}^{is}\tilde{g}_{sj|k}^{0} - \delta_{j}^{i}\tilde{\omega}_{k},$$

$$\tilde{C}_{jk}^{i} = \tilde{C}_{jk}^{i} + \frac{1}{2}g^{is}g_{sj}|_{k}^{0} - \delta_{j}^{i}\dot{\omega}_{k},$$

$$C_{jk}^{i} = C_{jk}^{i} + \frac{1}{2}\tilde{g}^{is}\tilde{g}_{sj}|_{k}^{0} - \delta_{j}^{i}\dot{\omega}_{k},$$
(8)

where $\begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}^0$ denote the h-and respective v-covariant derivatives with respect to the given d-linear connection $\stackrel{0}{D}$ and $\omega = \omega_i dx^i + \dot{\omega}_i \delta y^i$ and respective $\tilde{\omega} = \tilde{\omega}_i dx_i + \dot{\omega}_i \delta y^i$ are two given 1-forms in TM.

2. If we take a metrical (almost symplectic) d-linear connection as $\stackrel{0}{D}$ in Theorem 3, then (8) becomes:

$$\begin{cases}
L^{i}_{jk} = L^{i}_{jk} - \delta^{i}_{j}\omega_{k}, \\
\tilde{L}^{i}_{jk} = \tilde{L}^{i}_{jk} - \delta^{i}_{j}\tilde{\omega}_{k}, \\
\tilde{C}^{i}_{jk} = \tilde{C}^{i}_{jk} - \delta^{i}_{j}\dot{\omega}_{k}, \\
C^{i}_{jk} = C^{i}_{jk} - \delta^{i}_{j}\dot{\omega}_{k}.
\end{cases}$$
(9)

3. If we consider a d-linear connection compatible with conformal structure \hat{G} , corresponding to the 1-forms ω and $\tilde{\omega}$, as $\overset{0}{D}$ in Theorem 2, we have

THEOREM 4. Let $\overset{0}{D}$ be a given d-linear connection compatible with conformal structure \hat{G} , corresponding to the 1-forms ω and $\tilde{\omega}$ on TM, with local coefficients: $\overset{0}{D}\Gamma(\overset{0}{N},\omega,\tilde{\omega}) = (\overset{0}{L_{jk}^{i}},\overset{0}{\tilde{L}_{jk}^{i}},\overset{0}{\tilde{C}_{jk}^{i}},\overset{0}{C_{jk}^{i}})$. The set of all d-linear connections compatible with conformal structure \hat{G} , corresponding to the 1-forms ω and $\tilde{\omega}$ on TM, with local coefficients $D\Gamma(N,\omega,\tilde{\omega}) = (L_{jk}^{i},\tilde{L}_{jk}^{i},\tilde{C}_{jk}^{i},C_{jk}^{i})$ is given by:

where X_{j}^{i} , X_{jk}^{i} , \tilde{X}_{jk}^{i} , \tilde{Y}_{jk}^{i} , Y_{jk}^{i} are arbitrary tensor fields on TM, $\omega = \omega_{i}dx^{i} + \dot{\omega}_{i}\delta y^{i}$ and respective $\tilde{\omega} = \tilde{\omega}_{i}dx_{i} + \dot{\omega}_{i}\delta y^{i}$ are two arbitrary 1-forms in TM and $\overset{0}{\mathbf{l}}, \overset{0}{\mathbf{l}}$ denote h-and respective v-covariant derivatives with respect to $\overset{0}{D}$.

The result obtained in this particular case support the findings of R.Miron and M.Hashiguchi for the Finsler connections in their paper [7].

4. If we take $X_{j}^{i} = 0$ in Theorem 3 we obtain a result given by R.Miron and M.Anastasiei in [6]:

THEOREM 5.Let $\overset{0}{D}$ be a given d-linear connection compatible with conformal structure \hat{G} , corresponding to the 1-forms ω and $\tilde{\omega}$ on TM, with local coefficients: $\overset{0}{D}\Gamma(\overset{0}{N},\omega,\tilde{\omega}) = (\overset{0}{L_{jk}^{i}},\overset{0}{\tilde{L}_{jk}^{i}},\overset{0}{\tilde{C}_{jk}^{i}},\overset{0}{C_{jk}^{i}})$. The set of all d-linear connections compatible with conformal structure \hat{G} , which preserve the nonlinear connection $\overset{0}{N}$, corresponding to the 1-forms ω and $\tilde{\omega}$ on TM, with local coefficients $D\Gamma(\overset{0}{N},\omega,\tilde{\omega}) = (L_{jk}^{i},\tilde{L}_{jk}^{i},\tilde{C}_{jk}^{i},C_{jk}^{i})$ is given by:

$$L^{i}_{jk} = L^{0}_{jk} + \Omega^{ir}_{hj} X^{h}_{rk},$$

$$\tilde{L}^{i}_{jk} = \tilde{L}^{i}_{jk} + \tilde{\Omega}^{ir}_{hj} \tilde{X}^{h}_{rk},$$

$$\tilde{C}^{i}_{jk} = \tilde{C}^{i}_{jk} + \Omega^{ir}_{hj} \tilde{Y}^{h}_{rk},$$

$$C^{i}_{jk} = C^{i}_{jk} + \tilde{\Omega}^{ir}_{hj} Y^{h}_{rk},$$

$$(11)$$

where X_{jk}^{i} , X_{jk}^{i} , \tilde{X}_{jk}^{i} , \tilde{Y}_{jk}^{i} , Y_{jk}^{i} are arbitrary tensor fields on TM.

References

[1.] ATANASIU, GH., GHINEA, I., Connexions Finsleriennes Générales Presque Symplectiques, An. St. Univ. "Al. I. Cuza", Iași, Sect. I a Mat. 25 (Supl.), 1979, 11-15.

[2.] BOWMAN, R., Tangent Bundles of Higher Order, Tensor, N.S., Japonia, 47, 1988, 97-100.

[3.] CRUCEANU, V., MIRON, R., Sur les connexions compatible à une Structure Mêtrique ou Presque symplectique, Mathematica (Cluj), **9**(32), 1967, 245-252.

[4.] MATSUMOTO, M., *The Theory of Finsler Connections*, Publ. of the Study Group of Geometry 5, Depart.Math., Okayama Univ., 1970, XV+220 pp.

[5.] MIRON, R., Introduction to the Theory of Finsler Spaces, The Proc. of Nat. Sem. on Finsler Spaces, Braşov, 1980, 131-183.

[6.] MIRON, R., ANASTASIEI, M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publ., FTPH, no.59, 1994.

[7.] MIRON R., HASHIGUCHI, M., Conformal Finsler Connections, Rev. Roumaine Math. Pures Appl., 26, 6(1981), 861-878.

[8.] OPROIU, V., On the Differential Geometry of the Tangent Bundle, Rev. Roum. Math. Pures Appl., **13**, 1968, 847-855.

[9.] PURCARU, M., Structuri geometrice remarcabile în geometria Lagrange de ordinul al doilea, Teză de doctorat, Univ. "Babeş-Bolyai" Cluj-Napoca, 2002.

[10.] YANO, K., ISHIHARA, S., *Tangent and Cotangent Bundles*, M.Dekker, Inc., New-York, 1973.

M. Purcaru and M. Târnoveanu Department of Algebra and Geometry "Transilvania" University Braşov, Romania e-mail: mpurcaru@unitbv.ro