
ACTA UNIVERSITATIS APULENSIS No 11/2006

Proceedings of the International Conference on Theory and Application of
Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

ALGORITHM TO WORKING WITH SPARSE MATRICES

Vlad Monescu

Abstract. A new method to memorizing a sparse matrix is developed
here. Blocks of matrices are binary converted and take into consideration when
the elements have to be accessed. The algorithm is compared with some classic
ones and computational results are presented.

2000 Mathematics Subject Classification: 65F50, 65F30, 68Q25.

1. Introduction

The ideea to take in consideration the large number of zeros of a matrix
and their location was initiated in the second half of nineteenth century by
electrical engineers. A n × m matrix is a sparse matrix if the number of
nonzero entries is much smaller than n × m. There are two problems: how
to retain in minimum memory space a sparse matrix and how to access it’s
elements. Sparse matrices arise in optimization problems, solutions to partial
differential equations, structural and circuit analysis and computational fluid
dynamics. Sparse matrices can be huge; dimensions on the order of 100,000
are not uncommon. Only by exploiting sparsity can we hope to be able to
manipulate such a matrix on a computer.

2. The algorithm

We propose a method to memorizing a sparse matrix. For this let A be a
sparse matrix, A ∈ Mn,m(R). For the following construction it will be chosen
the numbers p, q ∈ N∗. The rows of matrix are divided in groups of p rows
and the columns are divided in groups of q columns. If n mod p 6= 0 or m mod
q 6= 0 then supplementary rows, respectively columns are added containing
null values. The matrix we obtain by adding rows or columns is equivalent
with the initial matrix. Each of ([n−1

p
] + 1)× ([m−1

q
] + 1) blocks of elements is

p× q binary converted. All positions containing nonzero values are considered
1. Thus we obtain a new matrix T which have nonnegative integer elements
as result of conversion in p× q bits in a matricial disposal.

177

Vlad Monescu - Algorithm to working with sparse matrices

If we denote N the number of nonzero elements in A then N + ([n−1
p

] +

1)× ([m−1
q

] + 1) memory locations are needed to memorize the sparse matrix
A using this method.

Example.

For the matrix A =

11 0 0 14 5 0 0 8
0 0 0 5 0 0 0 1
0 0 0 6 0 0 0 0
4 0 0 7 0 1 0 0
0 0 0 0 0 0 0 4
0 0 0 0 10 0 0 0
17 0 0 0 0 0 58 0

, if p = 4 and q = 4

we have the following configuration

A
′
=

1 0 0 1 · 1 0 0 1
0 0 0 1 · 0 0 0 1
0 0 0 1 · 0 0 0 0
1 0 0 1 · 0 1 0 0
· · · · · · · · ·
0 0 0 0 · 0 0 0 1
0 0 0 0 · 1 0 0 0
1 0 0 0 · 0 0 1 0
0 0 0 0 · 0 0 0 0

.

It has been added a row with 0. Each group of 16 bits represents a non-
negative integer number in binary conversion. Thus we obtain

T =

(
37145 37124
128 6176

)
.

The vector of nonzero elements (ordered by their appeareances in their blocks)
is

wT =
(

11 14 5 6 4 7 5 8 1 1 17 4 10 58
)
.

Once we have T , and w it is necessary to access the elements of matrix A.
Let it be v, b, k ∈ N. We denote

• Nb(v) - number of nonzero bits of v in the b-bits binary representation,

• Pb,k(v) - position of the k-th nonzero bit of v in the b-bits binary repre-
sentation,

178

Vlad Monescu - Algorithm to working with sparse matrices

• Bb,k(v) - value of the k-th bit of v in the b-bits binary representation.

If we have to access the element ai,j and

Bb,pq−(i mod p)q−j mod q(t[i−1
p

]+1,[j−1
q

]+1) = 0

then ai,j = 0, else the position s of the element ai,j in w is given by

s =

[i−1
p

]∑
k=1

[m−1
q

]+1∑
l=1

Npq(tk,l) +

[j−1
q

]∑
l=1

Npq(t[i−1
p

]+1,l)−N(i mod p)q+j mod q(t[i−1
p

]+1,[j−1
p

]+1)

This method is very easy to be implemented in a programming language
using bitwise operations. Also, the memory space required to retain the matrix
using this algorithm is

N + ([
n− 1

p
] + 1)× ([

m− 1

q
] + 1).

This storage method is obviously better than classical methods if the num-
bers p and q are big enough.

Denoting

• r, the number which represents the memorising index of the given matrix
A, (r = N

nm
, N 6= nm) and

• r
′
, the memorising index of the matrix A through this method

then, the inequality

pq >
nm

(r − 1)N

is a condition to obtain a better memorising index.

3. Conclusions

A new method to memorizing a sparse matrix was developed in this paper.
Blocks of matrices were binary converted and were taken into consideration
when the elements were accessed. The solving method was compared with
other algorithms and a condition of efficiency was formulated. Computational
results were presented in order to authenticate the proposed algorithm.

179

Vlad Monescu - Algorithm to working with sparse matrices

References

[1] Y. Saad, Iterative Methods for Linear Systems, PWS Publishing, Boston,
1996.

[2] N. Andrei, C. Răsturnoiu, Matrice rare şi aplicaţiile lor, Bucureşti, 1983.
[3] Pissanetzky, Sergio, Sparse Matrix Technology, Academic Press Inc.,

London, 1984.

Vlad Monescu
Department of Computer Science
Transilvania University of Brasov
50 Iuliu Maniu
email:v.monescu@info.unitbv.ro

180

