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Abstract: In this paper we estimate the probability P (Z ∈ (A, B)) , A, B ∈
R for a transform Z = ϕ(X) of the n-dimensional random variable X =
(X1, · · · , Xn), without the knowledge of the joint distribution function of X.
For this purpose, we use a Copula, estimated from a sample of the n-dimensional
random variable X.
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1. First section

The financial life often requires the calculation of some sort of expectations:
expected utility, expected payoffs, expected losses, which are expressed as cer-
tain transforms of some random variables. We shall provide a method, based
on the copula concept, to calculate the probabilities that these transforms
belong to a certain neighbourhood of their expected values.

First, we recall briefly the concept of copula and some useful results.
We denote I = [0, 1].

Definition 1.1.The bivariate copula is a function C : I2 → I, with the
following properties:

a) ∀ u, v ∈ I, C(u, 0) = C(0, v) = 0
b) ∀ u, v ∈ I, C(u, 1) = u, C(1, v) = v
c) ∀ u1, u2, v1, v2 ∈ I, u1 ≤ u2, v1 ≤ v2 the inequality

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Let X and Y be two continuous random variable, with the joint dis-
tribution function H(x, y) : R2 → [0, 1] and marginals F (x) : R → [0, 1]
respectively G(y) : R → [0, 1].
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Definition 1.2. The function C : I2 → I,

∀u, v ∈ I C(u, v) = H
(
F−1(u), G−1(v)

)
(1)

is called the copula associated to the pair of continuous random variables X
and Y.

The above defined function C satisfies the requirements a), b), c) of the
Definition 1.1.

Theorem 1.1.(Sklar [1]). If X and Y are two continuous random variables
with joint distribution H(x, y) and marginals F (x) and G(y), then a unique
bivariate copula C : I2 → I exists, so that the relation (1) holds. Conversely,
if C : I2 → I is a bivariate copula, then only one joint distribution H(x, y),
with marginals F (x) and G(y), exists, so that

∀ x, y ∈ R H(x, y) = C (F (x), G(y)) . (2)

Definition 1.3. The n-variate copula is a function C : In → I, with the
following properties:

a) If i ∈ 1, n exists so that ui = 0, then C (u1, · · · , ui−1, 0, ui+1, · · · , un) = 0;
b) C (1, · · · , 1, ui, 1, · · · , 1) = ui, i = 1, n.
c) If [ai, bi] ⊆ I, i ∈ 1, n and B = [a1, b1]× · · · × [an, bn], an n-box, then

VC(B) = ∆bn
an

∆bn−1
an−1

· · ·∆b2
a2

∆b1
a1

C(t) ≥ 0, where

∆bk
ak

C(t) = C (t1, · · · , tk−1, bk, tk+1, · · · , tn) .

Theorem 1.2.(Sklar [1]). If Xi are continuous random variables with
joint distribution H(x), x ∈ Rn, x = (x1, · · · , xn) and marginals Fi(xi),then a
unique n-variate copula C : In → I exists, so that

∀u ∈ In u = (u1, · · · , un) C (u) = H
(
F−1

1 (u1), · · · , F−1
n (un)

)
. (3)

Conversely, if C : In → I is a n-variate copula, then only one joint distribution
H(x), x ∈ Rn, with continuous marginals, exists, so that

∀x ∈ Rn H(x) = C (F1(x), · · · , Fn(xn)) . (4)
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2. The sceond section

In this section, we consider a bidimensional random variable (X, Y ), having
the joint distribution function H : R2 → [0, 1], H(x, y) = P (X < x, Y < y)
and the marginal distribution functions F : R → [0, 1], F (x) = P (X < x) and
G : R → [0, 1], G(y) = P (Y < y). Generally, when the independence of X and
Y is not guaranteed, only the knowledge of marginal distribution functions F
and G is not sufficient for the determination of the joint distribution function
H, nor of the distribution function of a random variable Z = ϕ(X, Y ), which
is the transform of (X, Y ) by the function ϕ : R2 → R.

Many practical problems need to estimate the probability P (Z ∈ (A, B)) ,
A, B ∈ R, A < B, when we know the marginal distribution functions F
and G and a sample

{
(xi, yi), i ∈ 1, m

}
of the bidimensional random variable

(X, Y ).
In the following, we suppose:
a)F and G are strictly monotonic and admit continuous derivative of first

order;
b) the copula C : [0, 1]2 → [0, 1], which corresponds to H, admits continuous

second partial derivatives.
We denote
D = {(x, y) ∈ R2, ϕ(x, y) ∈ (A, B)} ,
D∗ = {(u, v) ∈ [0, 1]2, ϕ (F−1(u), G−1(v)) ∈ (A, B)}

Theorem 2.1.If the functions x 7→ F (x), y 7→ G(y), (u, v) 7→ C(u, v)
satisfies the conditions a) and b), then the following equality holds

P (Z ∈ (A, B)) =
∫ ∫

D∗

∂2C(u, v)

∂u∂v
du dv. (5)

Proof. Since the conditions for the validity of (2) fulfills, from hypothesis
it results that H also admits the partial derivatives

∂H(x, y)

∂x
,

∂2H(x, y)

∂x∂y
.

In the relation (2) we perform successively a partial derivation with respect
to x, then with respect to y and obtain

∂H(x, y)

∂x
=

∂C (F (x), G(y))

∂u
F ′(x)
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∂2H(x, y)

∂x∂y
=

∂2C (F (x), G(y))

∂u∂v
F ′(x) G′(y). (6)

Using (6), the following equalities take place

P (Z ∈ (A, B)) = P (ϕ(X, Y ) ∈ (A, B)) = P ((X, Y ) ∈ D) =

=
∫ ∫

D

∂2H(x, y)

∂x∂y
dx dy =

∫ ∫
D

∂2C (F (x), G(y))

∂u∂v
F ′(x) G′(y) dx dy. (7)

The application

t : D → D∗, t(x, y) = (F (x), G(y))

defines a pointwise transformation between D and D∗ and its Jacobian is
equal to F ′(x) G′(y). Using this transformation for a change of variables in
the last integral of (7), we obtain

∫
· · ·

∫
D

∂2C (F (x), G(y))

∂u∂v
F ′(x) G′(y) dx dy =

∫
· · ·

∫
D∗

∂2C(u, v)

∂u∂v
du dv.

(8)
From (7) and (8), the conclusion (5) results.

Remark 2.1. We fit a copula to the known sample
{
(xi, yi), i ∈ 1, m

}
of

the bidimensional random variable (X, Y ). Some methods for fitting Archimedean
copulas, based on Genest’s and MacKay’s results, are presented in [5]. The
copula found in this way has the required differential properties imposed to C,
and will replace C in the relation (5).

Remark 2.2.For a large class of functions ϕ : R2 → R, the form of the
domain D∗,allows us to express the double integral of (5) as an iterated one.

Theorem 2.2.If the functions x 7→ F (x), y 7→ G(y), (u, v) 7→ C(u, v)
satisfies the conditions a) and b) and

1) the function ϕ is continuous on R2 and admits a partial derivative

∂ϕ(x, y)

∂y
> 0 for (x, y) ∈ R2,
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2) the functions x 7→ a(x) and x 7→ b(x) defined on R exist, so that

∀x ∈ R ϕ (x, a(x)) = A, ϕ (x, b(x)) = B,

then

P (Z ∈ (A, B)) =
∫ 1

0
du
∫ G(b(F−1(u)))

G(a(F−1(u)))

∂2C(u, v)

∂u∂v
dv. (9)

Note that the limits of the inner integral can be effectively determined, when
the functions x 7→ a(x), x 7→ b(x) and u 7→ F−1(u) can be written as explicit
functions (in a closed form).

Proof. According to the hypotheses, the condition A < B implies for each
x ∈ R, a(x) < b(x). Since the inverse of an increasing function is also
increasing, the following conditions are equivalent

(u, v) ∈ D∗ ⇔ (x, y) ∈ D ⇔ x ∈ R and a(x) < y < b(x) ⇔

⇔ F−1(u) ∈ R and a
(
F−1(u)

)
< G−1(v) < b

(
F−1(u)

)
⇔

⇔ 0 < u < 1 and G
(
a
(
F−1(u)

))
< v < G

(
b
(
F−1(u)

))
.

The double integral of (1) can be expressed as an iterated one

∫ ∫
D∗

∂2C(u, v)

∂u∂v
du dv =

∫ 1

0
du
∫ G(b(F−1(u)))

G(a(F−1(u)))

∂2C(u, v)

∂u∂v
dv

whence (2) results.

Remark 2.3.If in the hypothesis of the Theorem 2.2. the condition 1) is
replaced by the condition

1’) the function ϕ is continuous on R2 and admits a partial derivative

∂ϕ(x, y)

∂y
< 0 for (x, y) ∈ R2,

then in the relation (9) the limits of inner integral will be interchanged.

Remark 2.4.In the above theorem, the role of variable x and y, respec-
tively of u and v can be interchanged.
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Remark 2.5.In the particular case, when the function ϕ : R2 → R is
given by the relation ϕ(X, Y ) = X + Y , we obtain

a(x) = A−x, b(x) = B−x, a
(
F−1(u)

)
= A−F−1(u), b

(
F−1(u)

)
= B−F−1(u).

In this case, the formula (2) became

P (Z ∈ (A, B)) =
∫ 1

0
du
∫ G(A−F−1(u))

G(B−F−1(u))

∂2C(u, v)

∂u∂v
dv.

3. The third section

Now, we will generalize the Theorem 2.1, for the case of a random vari-
able Z = ϕ(X), which is the transform of the n-dimensional random variable
X = (X1, · · · , Xn) by the function ϕ : Rn → R. We denote by H the joint
distribution of X

H(x) = H(x1, · · · , xn) = P (X1 < x1, · · · , Xn < xn)

which is unknown and by Fi, i = 1, n , its marginal distribution functions

Fi(xi) = P (Xi < xi)

which are known.
We also know a sample{

xj = (xj1, · · · , xjn), j = 1, m
}

of the n-dimensional random variable X.
We suppose that
a′) Fi are strictly monotonic and admit continuous derivatives of first order;
b′) the copula C : [0, 1]n → [0, 1], which correspond to H, admits contin-

uous n-th order partial derivatives.
We denote x = (x1 · · · , xn) ∈ Rn, u = (u1, · · · , un) ∈ [0, 1]n,
D = {x ∈ Rn, ϕ(x1, · · · , xn) ∈ (A, B)} ,

D∗ =
{
u ∈ [0, 1]n, ϕ

(
F−1

1 (u1), · · · , F−1
n (un)

)
∈ (A, B)

}
.
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Theorem 3.1. If the functions xi 7→ F (xi), i = 1, n and u 7→ C(u1, · · · , un)
satisfy the conditions a′) and b′), then the following equality holds

P (Z ∈ (A, B)) =
∫
· · ·

∫
D∗

∂nC (u1, · · ·un)

∂u1 · · · ∂un

du1 · · · dun. (10)

The proof of this theorem is similar with that of the Theorem 2.1 and is
based on the relation (4) of the Sklar’s Theorem 1.2, concerning the n-variate
copulas.

Example.Let Xi, i = 1, n be continuous random variables with the known
strictly monotonic distribution functions Fi. We suppose that Fi have contin-
uous derivatives of first order and their inverses F−1

i can be written in a closed
form.

We want to express, by means of copulas, the probability that the value of
the sum

Z =
n∑

i=1

αiXi; αi > 0

belongs in a neighbourhood with radius δ, δ > 0 of the expected value of Z

µ = M(Z) =
n∑

i=1

αiM(Xi).

Let C be the n-variate copula corresponding to the n-dimensional random
variable (X1, · · · , Xn) ,

D =

{
(x1, · · · , xn) ∈ Rn,

∣∣∣∣∣
n∑

i=1

αixi − µ

∣∣∣∣∣ < δ

}

and D∗ the image of D, by the pointwise transformation defined by the rela-
tions ui = Fi(xi), i = 1, n. According to (10), the equality

P (|Z − µ| < δ) =
∫
· · ·

∫
D∗

∂nC (u1, · · ·un)

∂u1 · · · ∂un

du1 · · · dun (11)

holds.
The following equivalences takes place:

(x1, · · · , xn) ∈ D ⇔ xi ∈ R, i = 1, n− 1,

1

αn

(
µ−

n∑
i=1

αixi − δ

)
< xn <

1

αn

(
µ−

n∑
i=1

αixi + δ

)
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⇔ F−1
i (ui) ∈ R, i = 1, n− 1,

1

αn

(
µ−

n∑
i=1

αiF−1
i (ui)− δ

)
< F−1

n (un) <
1

αn

(
µ−

n∑
i=1

αiF−1
i (ui) + δ

)
⇔

⇔ 0 < ui < 1, i = 1, n− 1,

a({ui}i=1;n−1 ;
{
αk
}

k=1;n
) < un < b({ui}i=1;n−1 ;

{
αk
}

k=1;n
)where

a({ui}i=1;n−1 ;
{
αk
}

k=1;n
) = Fn

[
1

αn

(
µ−

n−1∑
i=1

αiF−1
i (ui)− δ

)]
,

b({ui}i=1;n−1 ;
{
αk
}

k=1;n
) = Fn

[
1

αn

(
µ−

n−1∑
i=1

αiF−1
i (ui) + δ

)]
.

Writing the second member of (11) as an iterated integral, we obtain

P (|Z − µ| < δ) =
∫ 1

0
du1 · · ·

∫ 1

0
dun−1

∫ a({ui}i=1;n−1
;{αk}

k=1;n
)

b({ui}i=1;n−1
;{αk}

k=1;n
)

∂nC (u1, · · ·un)

∂u1 · · · ∂un

dun.

Remark 3.1.The procedure indicated in Remark 2.1 can be applied also
in this general case.

4. The fourth section

In this section we present certain financial applications of our results and
some conclusions.

One of the main issues of risk management is the aggregation of individual
risks. The risk can split into two parts: the individual risks and the dependence
structure between them. For this purpose the copula function is a powerful
concept for describing the joint distribution of the aggregate risk.

In many cases is very useful to know how probable is that the aggregate risk
belongs to a certain neighbourhood of its expected value (as in the previous
example).

Another field of risk management, where we can use successfully the idea
presented in this paper, is the determination of the value of risk, denoted
”VaR ”. One of the most frequent questions concerning the risk management
in finance involves the estimation of extreme quantiles. This correspond to
the determination of the value of a given random variable Z (obtained as a
transform of other random variables Xi), which is exceeded with a given low
probability q :
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P (Z > V aR) = q, where q = 0, 05 or q = 0, 01 or other low probability.

This is equivalent to P (Z < V aR) = 1− q = p.
The value at risk, called ”risk capital” is generally defined as the capital

which is sufficient, with a great probability (as 0,95 or 0,99), to cover losses
from a portfolio.

Because P (Z < a) is increasing with respect to a, we can determine
successively the values of a, till we obtain P (Z < a) = p. This is a procedure
to determinate the value of V aR.

Now we consider that the risk is represented by the random variable Z, from
the example of the previous point. The value of V aR can be determined by the
above procedure. But for that, we must estimate the probability P (Z < a),as
a function of a.

We take in the Theorem 3.1., A = −∞, B = a and obtain, as in previous
example:

P (Z < a) =
∫ 1

0
du1 · · ·

∫ 1

0
dun−1

∫ b({ui}i=1;n−1
;{αk}

k=1;n
)

0

∂nC (u1, · · ·un)

∂u1 · · · ∂un

dun,

where b
(
{ui}i=1;n−1 ;

{
αk
}

k=1;n

)
= Fn

[
1

αn

(
a−∑n−1

1 αiF−1
i (ui)

)]
.

5.Conclusions

Because in practice the joint distribution is often not known, the copulas
provide a very important tool to model this, by modeling a lot of types of
dependences between the underlying random variables. For this purpose our
results are useful since we can determine with them the probabilities, using
only copulas and the marginal distribution functions. These are useful when
the quantiles can be written in an explicit form.
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