Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005-Alba Iulia, Romania

THE CYLINDRICAL TRANSFORM $D_{C}(R, Z)$ OF THE FUNCTIONS SPACE $D\left(R^{3}\right)$

Wilhelm W. Kecs

Abstract. We define the space of test function $D_{c}(r, z)$ and we give some of its properties. The cylindrical transformation is $T_{c}: D\left(R^{3}\right) \longrightarrow D_{c}(r, z) \subset$ $D\left(R^{2}\right)$ defined and it is shown that T_{c} is a linear and continuous operator from $D\left(R^{3}\right)$ in $D_{c}(r, z)$.

Key words: distributions, cylindrical transform

1. Introduction

To solve certain problems from the physical-mathematics, sometimes it is useful to change the Cartesian coordinates $(x, y, z) \in R^{3}$ into the cylindrical coordinates $(r, \theta, z) \in R^{3}$. This necessity leads to the writing of the distributions in the cylindrical coordinates, for which we shall define the function test space $D_{c}(r, z)$ as well as the cylindrical transform T_{c}. Both for the test space $D_{c}(r, z)$ in the cylindrical coordinates (r, z) and for the cylindrical transform T_{c} associated, certain properties are established. These allow the study of some distributions representable only with respect to the cylindrical coordinates $(r, z) \subset R^{2}$.

2. General Results

Let be the application $T: R^{3} \longrightarrow R^{3}$ defined by the relations:

$$
\begin{equation*}
x=r \cos \theta, y=r \sin \theta, z=z \tag{1}
\end{equation*}
$$

these relations define the univocal transformation from the cylindrical coordinates $(r, \theta, z) \in R^{3}$ to the Cartesian coordinates $(x, y, z) \in R^{3}$, having the Jacobian of the transform

$$
J(r, \theta, z)=\frac{\partial(x, y, z)}{\partial(r, \theta, z)}=r
$$

If to the punctual transformation (1) we impose the restrictions $r \geq 0, \theta \in$ $[0,2 \pi), z \in R$, then the transformation (1) becomes locally bijective everywhere with the exception of the points $\left(0,0, z_{0}\right) \in R^{3}$. Thus, the origin O of the Cartesian system of coordinates represents a singular point, because $J(r, \theta, z)=r=0$, which in the cylindrical coordinates is defined by $r=0, z=0$, and $\theta \in R$ arbitrary.

To the punctual transformation T defined by (1) we associate the functions space $D_{c}(r, z)$.

Definition 2.1. We call space of the test functions $D_{c}(r, z)$, the set of the functions
$D_{c}(r, z)=\left\{\psi \mid \psi: R^{2} \longrightarrow R, \psi(r, z)=\int_{0}^{2 \pi} \varphi(r \cos \theta, r \sin \theta, z) d \theta, \varphi \in D\left(R^{3}\right)\right\}$.
Proposition 2.1. The space $D_{c}(r, z)$ has the properties

1. $D_{c}(r, z) \subset D\left(R^{2}\right)$;
2. The function $\psi(r, z)$ is an even function with respect to $r \in R$ and

$$
\frac{\partial^{k} \psi(0,0)}{\partial r^{k}}=\left\{\begin{array}{l}
0, \quad \text { for } k \text { odd } \tag{3}\\
\sum_{n+m=k} \frac{k!}{n!m!} a_{n m} \frac{\partial^{n+m} \varphi(0,0,0)}{\partial x^{n} \varphi y^{m}}, \quad \text { for } k \text { even }
\end{array}\right.
$$

where $a_{n m}$ has the expression
$a_{n m}=\int_{0}^{2 \pi} \cos ^{n} \theta \sin ^{m} \theta d \theta=$
$=\left\{\begin{array}{l}0, \quad \text { for } m \text { and } n \text { odds or } m+n \text { odd } \\ \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(n-1)}{(m+1)(m+3) \ldots(m+n-1)} \cdot \frac{\pi}{2^{m+n-1}} \cdot \frac{(m+n)!}{\left[\left(\frac{m * n}{2}\right)!\right]^{2}}, \text { for } m \text { and } n \text { evens }\end{array}\right.$

Proof. The function $\varphi^{*}(r, \theta, z)=\varphi(r \cos \theta, r \sin \theta, z)$ is obviously indefinite derivable, resulting from the composition of functions of the same class. Because the function $\varphi \in D\left(R^{3}\right)$ is with compact support, results that for $|r|$ or $|z|$ big enough, tends to 0 and thus we deduce that ψ is with compact support, then $\psi(r, z) \in D\left(R^{2}\right)$, i.e. $D_{c}(r, z) \subset D\left(R^{2}\right)$.

To justify the property 2 we shall show that the function $\psi(r, z)$ is an even function with respect to $r \in R$. With that end in view we observe that the function

$$
\varphi^{*}(r, \theta, z)=\varphi(r \cos \theta, r \sin \theta, z) ;(r, \theta, z) \in R^{3}
$$

is a periodic function with the period 2π with respect to the variable $\theta \in R$.
Then, we can write

$$
\begin{equation*}
\psi(r, z)=\int_{0}^{2 \pi} \varphi^{*}(r, \theta, z) d \theta=\int_{0}^{a+2 \pi} \varphi^{*}(r, \theta, z) d \theta, a \in R . \tag{5}
\end{equation*}
$$

Making the change of variable $u=\theta-\pi$ we obtain
$\psi(r, z)=\int_{-\pi}^{\pi} \varphi^{*}(r, u+\pi, z) d \theta=\int_{-\pi}^{\pi} \varphi(r \cos (u+\pi), r \sin (u+\pi), z) d u=$ $\int_{-\pi}^{\pi} \varphi(-r \cos u,-r \sin u, z) d u=\int_{-\pi}^{\pi} \varphi^{*}(-r, \theta, z) d \theta=\int_{0}^{2 \pi} \varphi^{*}(-r, \theta, z) d \theta=\psi(-r, z)$, wherefrom results that $\psi(r, z)$ is an even function with respect to the variable $r \in R$.

Because $\psi(r, z)$ is an even function with respect to the variable $a \in R$, we obtain
$\frac{\partial^{k} \psi(0,0)}{\partial r^{k}}=0$ for k an odd number.
Differentiating (5) we obtain

$$
\begin{equation*}
\frac{\partial^{k} \psi(r, z)}{\partial r^{k}}=\int_{0}^{2 \pi}\left(\frac{\partial}{\partial x} \cos \theta+\frac{\partial}{\partial x} \sin \theta\right)^{(k)} \varphi(r \cos \theta, r \sin \theta, z) d \theta \tag{6}
\end{equation*}
$$

wherefrom for $r \longrightarrow 0$ and $z \longrightarrow 0$ we have

$$
\begin{aligned}
\frac{\partial^{k} \psi(0,0)}{\partial r^{k}}= & \int_{0}^{2 \pi} \sum_{\alpha=0}^{k} C_{k}^{\alpha} \frac{\partial^{k} \varphi(0,0,0)}{\partial x^{k-\alpha} \partial y^{\alpha}} \cos ^{k-\alpha} \theta \sin ^{\alpha} \theta d \theta= \\
& \sum_{n+m=k} \frac{k!}{n!m!} a_{n m} \frac{\partial^{n+m} \varphi(0,0,0)}{\partial x^{n} \varphi y^{m}}
\end{aligned}
$$

where $a_{n m}$ has the expression (4).
The expression of the coefficients $a_{n m}$, it results using the recurrence relation

$$
a_{n m}=\frac{n-1}{m+1} a_{n-2} m+2 n, m \in N_{0} ;
$$

as well as the formula

$$
\int_{0}^{2 \pi} \cos ^{m} \theta d \theta=\int_{0}^{2 \pi} \sin ^{m} \theta d \theta=\left\{\begin{array}{l}
0, \text { for } m \text { odd } \\
\frac{\pi}{2^{m-1}} \cdot \frac{m!}{\left[\left(\frac{m}{2}\right)!\right]^{2}}, \text { for } m \text { even } .
\end{array}\right.
$$

With this the proposition is proved.
Obviously, these result shows that the space $D_{c}(r, z)$ is a subspace of $D\left(R^{2}\right)$.
Definition 2.2. We call the cylindrical transformation the application

$$
D_{c}: D\left(R^{3}\right) \longrightarrow D_{c}(r, z) \subset D\left(R^{2}\right)
$$

defined by the relation

$$
\begin{equation*}
D_{c}(\varphi)(r, z)=\psi(r, z), \psi(r, z)=\int_{0}^{2 \pi} \varphi(r \cos \theta, r \sin \theta, z) d \theta,(r, z) \in R^{2} \tag{7}
\end{equation*}
$$

where $\varphi \in D\left(R^{3}\right)$.
The function

$$
\psi(r, z)=D_{c}(\varphi)(r, z),
$$

represents the cylindrical transformation of the function $\varphi \in D\left(R^{3}\right)$, and $D_{c}(r, z)$ the cylindrical transform of the space $D\left(R^{3}\right)$.

Obviously, the cylindrical transform T_{c} is a linear operator.
Proposition 2.2. Let be $\varphi \in D\left(R^{3}\right)$ and $\psi=T_{c}(\varphi)$. Then it holds the relation

$$
\begin{equation*}
\frac{\partial^{2} \psi(0,0)}{\partial r^{2}}=\pi \Delta \varphi(0,0,0) \tag{8}
\end{equation*}
$$

where Δ is the Laplace operator in R^{2}, namely:

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} .
$$

Proof. Considering $k=2$ that in the formula (3) we obtain

$$
\begin{gather*}
\frac{\partial^{2} \psi(0,0)}{\partial r^{2}}=\sum_{n+m=2} \frac{2!}{n!m!} a_{n m} \frac{\partial^{2} \varphi(0,0,0)}{\partial x^{n} \varphi y^{m}}= \\
=a_{02} \frac{\partial^{2} \varphi(0,0,0)}{\varphi y^{2}}+a_{20} \frac{\partial^{2} \varphi(0,0,0)}{\partial x^{2}}+a_{11} \frac{\partial^{2} \varphi(0,0,0)}{\partial x \varphi y} . \tag{9}
\end{gather*}
$$

Using the formula (4) we shall obtain for the coefficients a_{02}, a_{20}, a_{11} the values

$$
a_{02}=\int_{0}^{2 \pi} \sin ^{2} \theta d \theta=\pi, a_{20}=\int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\pi, \quad a_{11}=\int_{0}^{2 \pi} \cos \theta \sin \theta d \theta=0
$$

Substituting these values in (9) we obtain (8).
Concerning the convergence in the spaces $D\left(R^{3}\right)$ and $D_{c}(r, z) \subset D\left(R^{2}\right)$, we have

Proposition 2.3. The cylindrical transformation T_{c} is a continuous linear operator from $D\left(R^{3}\right)$ in $D_{c}(r, z)=T_{c}\left(D\left(R^{3}\right)\right) \subset D\left(R^{2}\right)$, hence $\varphi_{k} \xrightarrow{D\left(R^{3}\right)} \varphi$ implies $\psi_{k}=T_{c}\left(\varphi_{k}\right) \xrightarrow{D_{c}(r, z)} \psi=T_{c}(\varphi)$.

Proof. Let be $\varphi \in D\left(R^{3}\right)$ and $\psi=T_{c}(\varphi)$. Denoting with p_{m} and p_{m}^{*} semi-norms on $D\left(R^{3}\right)$ and on $D_{c}(r, z)$, respectively, we can write

$$
\begin{equation*}
p_{m}(\varphi)=\sup _{|\alpha| \leq m,(x, y, z) \in \omega}\left|D^{\alpha} \varphi\right|, \alpha \in N_{0}^{3}, m \in N_{0}, \sup \varphi \subset \omega, D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}} \partial z^{\alpha_{3}}} \tag{10}
\end{equation*}
$$

where $\omega \in R^{3}$ is a compact set, and

$$
p_{m}^{*}(\psi)=\sup _{|\beta| \leq m,(r, z) \in \omega_{1}}\left|D^{* \beta} \psi\right|, \beta \in N_{0}^{2}, m \in N_{0}, \sup \psi \subset \omega_{1}, D^{* \beta}=\frac{\partial^{|\beta|}}{\partial r^{\beta_{1}} \partial z^{\beta_{2}}}
$$

where $\omega_{1} \in R^{2}$ is a compact set.
Because

$$
\psi(r, z)=\int_{0}^{2 \pi} \varphi(r \cos \theta, r \sin \theta, z) d \theta
$$

we have

$$
\begin{equation*}
D^{* h} \psi=\int_{0}^{2 \pi} \sum_{m=0}^{h_{1}} \frac{h_{1}!}{m!\left(h_{1}-m\right)!} \cdot \frac{\partial^{|h|} \varphi(r \cos \theta, r \sin \theta, z)}{\partial x^{h_{1}-m} \partial y^{m} \partial z^{h_{2}}} \cos ^{h_{1}-m} \theta \sin ^{m} \theta d \theta \tag{11}
\end{equation*}
$$

where $h=\left(h_{1}, h_{2}\right) \in N_{0}^{2}$.
From the above mentioned the relation results

$$
\begin{equation*}
\sup _{(r, z) \in \omega_{1}}\left|D^{* h} \psi\right| \leq c_{h}, \sup _{|\alpha| \leq|h|,(x, y, z) \in \omega}\left|D^{\alpha} \varphi\right|, \alpha \in N_{0}^{3}, h \in N_{0}^{2}, D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}} \partial z^{\alpha_{3}}} \tag{12}
\end{equation*}
$$

$c_{h}>0$ being a constant depending on $h \in N_{0}^{2}$.
Taking into account (10), (12) we obtain

$$
\begin{equation*}
p_{m}^{*}(\psi)=\sup _{|\beta| \leq m,(r, z) \in \omega_{1}}\left|D^{* \beta} \psi\right| \leq c(m) \sup _{|\alpha| \leq m,(x, y, z) \in \omega}\left|D^{\alpha} \varphi\right|, \tag{13}
\end{equation*}
$$

hence

$$
\begin{equation*}
p_{m}^{*}(\psi) \leq c(m) p_{m}(\varphi), \tag{14}
\end{equation*}
$$

where $c(m)>0$ is a constant dependent upon $m \in N_{0}$.
The relation (14) emphasize the dependence between the semi-norms p_{m}^{*} and p_{m} corresponding to the spaces $D_{c}(r, z) \subset D\left(R^{2}\right)$ and $D\left(R^{3}\right)$, respectively.

From the inequality (14) we obtain

$$
\begin{equation*}
p_{m}^{*}\left(\psi_{k}-\psi\right) \leq c(m) p_{m}\left(\varphi_{k}-\varphi\right) \tag{15}
\end{equation*}
$$

since $\psi_{k}-\psi=T_{c}\left(\varphi_{k}-\varphi\right)$.
Because, according to the hypothesis $\varphi_{k} \xrightarrow{D\left(R^{3}\right)} \varphi$, then $\lim _{k} p_{m}\left(\varphi_{k}-\varphi\right)=0$, from (15) results $\lim _{k} p_{m}^{*}\left(\psi_{k}-\psi\right)=0$, namely $\psi_{k} \xrightarrow{D_{c}(r, z)} \psi$, which prove the proposition.

These results will be used to the study of a class of distributions from $D^{\prime}\left(R^{3}\right)$ representable only with respect to the cylindrical coordinates $(r, z) \in$ R^{2} 。

References

[1] Friedmann, F., Principles and techniques of applied mathematics, John Wiley, New York, 1956.
[2] Guelfand, I.M., Chilov, G.E., Les distributions, Tome 1, Dunod Paris, 1962.
[3] Kecs, Wilhelm W., Theory of distributions with applications (in Romanian), Ed. Academiei Române, Bucharest, 2003.

Wilhelm W. Kecs
Petrosani University, Petrosani, Romania
email:wwkecs@yahoo.com

