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Abstract. In [1] C. Alsina, B. Schweizer and A. Sklar gave a new defi-
nition of a probabilistic normed space. This definition, is based on a charac-
terization of normed spaces by a betweenness relation and put the theory of
probabilistic normed spaces on a new general basis. Starting from this idea we
study from a new and more general point of view the probabilistic 2-normed
spaces. Topological properties and examples for these generalized probabilistic
2-normed spaces are given. A new point of view for practical applications is
considered.
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1.Introduction

The notion of probabilistic metric space, was introduced in [18] by replacing
the real values of a metric by probability distribution functions. This new point
of view led to a large development of probabilistic analysis. Applications to
systems having hysteresis, mixture processes, the measuring errors theory were
also given [3], [13], [20].

In [21] A. N. S̆erstnev used the K. Menger’s idea and endowed a set having
an algebraic structure of linear space with a probabilistic norm and set the
bases of the probabilistic normed space theory.

The notions of a 2-metric space and of a linear 2-normed space were first
introduced by S. Gähler in [6]and [7], respectively. Since then, the theory of
2-metric spaces and of 2-normed spaces were enhanced and deep studies were
made, we refer [4],[5],[15].

In some papers the probabilistic 2-metric spaces and probabilistic 2-normed
spaces were also considered and some results were obtained [8-9], [12].

As usual R denotes the set of real numbers, R+ = {x ∈ R : x ≥ 0} and
I = [0, 1] is the closed unit interval. Let ∆+ denote the set of all distance
distribution functions, i.e., the set of non-decreasing, left-continuous functions
F : R → I with F (0) = 0.
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The set ∆+ will be endowed with the topology given by the modified Levy
metric dL [20]. Let D+ denote the set of those functions F ∈ ∆+ for which
lim
t→∞

F (t) = 1. If F, G ∈ ∆+ , then we write F ≤ G if F (t) ≤ G(t), for all

t ∈ R .
If a ∈ R+, then Ha will be the special function of ∆+, defined by Ha(t) = 0

if t ≤ a and Ha(t) = 1 if t > a. By the injective map a → Ha R+ can be
viewed as a subspace of D+. It is obvious that H0 ≥ F , for all F ∈ ∆+.

Recall that a t-norm is a two place map T : I × I → I that is associative,
commutative, non decreasing in each place and such that T (a, 1) = a, for all
a ∈ [0, 1]. A mapping τ : ∆+ × ∆+ → ∆+ is a triangle function if it is com-
mutative, associative and it has the H0 as the identity, i.e. τ(F, H0)) = F, for
every F ∈ ∆+. Note that, if T is a left continuous t-norm and τT is defined
by :
(T ) τT (F, G)(t) = sup

t1+t2<t
T (F (t1), G(t2)),

then τT is a triangle function [20].
Let T1 be a t-norm, then the function T : I × I × I −→ I defined by

T (a, b, c) = T1(a, T1(b, c)) is called a th-norm. If τ1 is a triangle function,
then the function τ : ∆+ × ∆+ × ∆+ −→ ∆+ defined by τ(F, G, H) =
τ1(F, τ1(G, H)), is called a tetrahedral function (in brief th-function). These
functions possess appropriate properties to define tetrahedral inequality in
probabilistic 2-metric spaces.

Definition 1. A probabilistic normed space is a ordered triple (L,F , τ),
where L is a real linear space, τ is a continuous triangle functions, and F is
a mapping from L into D+ such that, for all x, y ∈ L and α ∈ R the following
conditions hold :
(S1) Fx = H0 if and only if x = θ.
(S2) Fαx(t) = Fx(

t
|α|)

(S3) Fx+y ≥ τ(Fx, Fy).

We adopt the convention that F ( t
0
) = H0(t), for all t > 0. The theory

of probabilistic normed spaces has been developed in concordance with that
of ordinary normed spaces and with that of probabilistic metric spaces. It is
important in their own right and it also give new tools in the study of random
operator equations. For important results of probabilistic functional analysis
we refer [2], [3], [11], [20].
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A new definition of a probabilistic normed space has been given in [1] and it
incudes the above S̆erstnev’s definition as a special case.

Definition 2. A probabilistic normed space is a quadruple (L,F , τ, τ ∗),
where L is a real linear space, τ and τ ∗ are continuous triangle functions with
τ ≤ τ ∗, and F is a mapping from L into D+ such that, for all x, y ∈ L the
conditions (S1) and (S3) hold and the condition (S2) is replaced by :
(S4) F−x = Fx;
(S5) Fx 6 τ ∗(Fαx, F(1−α)x), for α ∈ [0, 1].
This definition is regarded as both natural and fruitful. One seems that it has
a great potential for future applications to various field of mathematics and
other areas.

2.Generalized probabilistic 2-normed spaces

In the this section we give an enlargement by two ways of probabilistic
2-normed spaces.

Definition 3. A probabilistic 2-metric space (briefly, a P-2M space) is a
triple (S,F , τ), where S is a nonempty set whose elements are the points of
the space, F is a mapping from S × S × S into D+,F(x, y, z) will be denote
by Fx,y,z, τ is a tetrahedral function and the following conditions are satisfied,
for all x, y, z, u ∈ S.
(P1) To each pair of distinct points x, y in S there exists a point z in S
such that Fx,y,z 6= H0 .
(P2) Fx,y,z = H0 if at least two of x, y, z are equal.
(P3) Fx,y,z = Fx,z,y = Fy,z,x.
(P4) Fx,y,z ≥ τ(Fx,y,u, Fx,u,z, Fu,y,z).

Let T be a th-norm and let us consider the following inequality :
(P5) Fx,y,z(t) ≥ T (Fx,y,u(t1), Fx,u,z(t2), Fu,y,z(t3)), (∀) t1, t2, t3 ∈ R+

t1 + t2 + t3 = t.
If (P4) is replaces by (P5) then the triple (S,F , T ) is called a P-2M space of
Menger’s type or simply a 2-Menger space.

Definition 4. Let L be a linear space of a dimension greater than one,
τ a triangle function , and let F be a mapping from L × L into D+. If the
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following conditions are satisfied :
(N1) Fx,y = H0 if x and y are linearly dependent,
(N2) Fx,y 6= H0 if x and y are linearly independent,
(N3) Fx,y = Fy,x, for every x, y in L,
(N4) Fαx,y(t) = Fx,y(

t
|α|), for every t > 0, α 6= 0 and x, y ∈ L,

(N5) Fx+y,z ≥ τ(Fxz, Fyz), whenever x, y, z ∈ L, ,
then F is called a probabilistic 2-norm on L and the triple (L,F , τ) is called
a probabilistic 2-normed space (briefly P-2N space) [9].

If the triangle inequality (N5) is formulated under a t-norm T :

(N5′) Fx+y,z(t1 + t2) ≥ T (Fxz(t1), Fyz(t2)), for all x, y, z,∈ L, t1, t2 ∈ R+,
then the triple (L,F , T ) is called a Menger 2-normed space.
If T is a left continuous t-norm and τT is the associated triangle function, then
the inequalities (N5) and (N5′) are equivalent.

Now, we will give an enlargement of the notion of probabilistic 2-normed
space by generalizing the axiom which give a connection between the distribu-
tion functions of a vector and its product by a real number.

Let ϕ be a function defined on the real field R into itself, with the following
properties : (a) ϕ(−t) = ϕ(t), for every t ∈ R; (b) ϕ(1) = 1; (c) ϕ is strict
increasing and continuous on [0,∞), ϕ(0) = 0 and lim

α→∞
ϕ(α) = ∞. Examples

of such functions are : ϕ(α) = |α|; ϕ(α) = |α|p, p ∈ (0,∞); ϕ(α) = 2α2n

|α|+1
,

n ∈ N+.
Definition 5. Let L be a linear space of a dimension greater than one, τ a

triangle function , and let F be a mapping from L × L into D+. If the con-
ditions (N1), (N2), (N3), and (N5) are satisfied and the condition (N4) is
replaced by :
(N4′) Fαx,y(t) = Fx,y(

t
ϕ(α)

), for every t > 0, α 6= 0 and x, y ∈ L,

then the triple (L,F , τ) is called a probabilistic ϕ-2-normed space. We re-
call that a 2-normed space is a pair (L, ||·, ·||) ([7]), where L is a linear space
of a dimension greater than one and ||·, ·|| is a real valued mapping on L× L,
such that the following conditions be satisfied :
(G1) ||x, y|| = 0 if, and only if, x and y are linearly dependent,
(G2) ||x, y|| = ||y, x||, for all x, y ∈ L,
(G3) ||α · x, y|| = |α||x, y||, whenever x, y ∈ L and α ∈ R,
(G4) ||x + y, z|| ≤ ||x, z||+ ||y, z||, for all x, y, z ∈ L.
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If the conditions (G1), (G2), and (G4) are satisfied and the condition (G3)
is replaced by :
(G3′) ||αx, y|| = ϕ(α)||x, y||, whenever x, y ∈ L and α ∈ R
then, the pair (L, ||·, ·||) is called a a ϕ-2-normed space.

Remark 1. It is easy to check that every ϕ-2-normed space (L, ||·, ·||)
can be made a probabilistic ϕ-2-normed space, in a natural way, by setting
Fx,y(t) = H0(t− ||x, y||), for every x, y ∈ L, t ∈ R+ and T = Min .

Proposition 1. Let G ∈ D+ be different from H0, let (L, ||·, ·||) be a
ϕ-2-normed space with ϕ(α) = |α|p, p ∈ (0, 1], and F : L × L → D+ defined
by Fθ,x = H0 and, if x, y 6= θ by

Fx,y(t) = G(
t

||x, y||
), t ∈ R+.

Then, the triple (L,F , T ) becomes a probabilistic ϕ-2-normed space under the
t-norm T = Min and the ϕ(α) = |α|p, p ∈ (0,∞). This is called a simple
probabilistic ϕ-2-normed space generated by the distribution function G and
the ϕ-2-normed space (L, ||·, ·||).

Proof. Let us verify the axioms (N4′) and (N5′). Indeed

Fαx,y(t) = G(
t

||αx, y||p
) = G(

t

|α|p||x, y||
) = Fx,y(

t

|α|p
).

In order to prove the inequality (N5) we shall use the properties of a quasi-
inverse F∧ of a distribution function F defined by : F∧(u) = sup {t : F (t) <
u}. Since F∧

x,y = ||x, y||G∧, we have, for every x, y, z ∈ L,

[τM(Fx,z, Fy,z]
∧ = F∧

x,z + F∧
y,z = ||x, z||G∧ + ||y, z||G∧ ≥ ||x + y, z||G∧ = F∧

x+y,z.

But, the above inequality is equivalent with Fx+y,z > τM(Fx,z, Fy,z). So, the
inequality (N5) is satisfied.

The above proposition shows that, by starting from a 2-normed space or
from a ϕ-2-normed space, for particular functions G, different probabilistic
ϕ-2-normed spaces can be obtained. So, probabilistic ϕ-2-normed spaces have
a more large statistical disposal. So, every process of measurement of a pair
of vectors can be statistical interpreted by using an appropriate statistical
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distribution function G.
The following theorem give a topological structure of probabilistic ϕ-2-

normed spaces. Let (L,F , τ) be a probabilistic ϕ-2-normed space and A be
the family of all finite and non-empty subsets of the linear space L. For every
A ∈ A, ε > 0 and λ ∈ (0, 1) we define a neighborhood of the origin as being
the subset of L given by

(V ) V (ε, λ, A) = {x ∈ L : Fx,a(ε) > 1−λ, a ∈ A}

Theorem 1. Let (L,F , τ) be a probabilistic ϕ-2-normed space under a
continuous triangle function τ such that τ ≥ τTm, where Tm(a, b) = max{a +
b− 1, 0}, then (L,F , τ) becomes a Hausdorff linear topological space having as
a fundamental system of neighborhoods of the null vector θ the family :

(F ) Vθ = {V (ε, λ, A) : ε > 0, λ ∈ (0, 1)A ∈ A}.

Proof. Let V (εk, λk, Ak), k = 1, 2 be in V . We consider A = A1 ∪ A2, ε =
min{ε1, ε2}, λ = min{λ1, λ2}, then V (ε, λ, A) ⊂ V (ε1, λ1, A1) ∩ V (ε2, λ2, A2).

Let α ∈ R such that 0 ≤ |α| ≤ 1 and x ∈ αV (ε, λ, A), then x = αy, where
y ∈ V (ε, λ, A). For every a ∈ A we have

Fx,a(ε) = Fαy,a(ε) = Fy,a(
ε

ϕ(α)
) ≥ Fy,a(ε) > 1− λ.

This shows us that x ∈ V (ε, λ, A), hence αV (ε, λ, A) ⊂ V (ε, λ, A).
Now, let’s show that, for every V ⊂ V and x ∈ L there exists β ∈ R, β 6= 0

such that βx ∈ V . If V ∈ VM then there exists ε > 0, λ ∈ (0, 1) and A ∈ A
such that V = V (ε, λ, A). Let x be arbitrarily fixed in L and α ∈ R, α 6= 0,
then Fαx,a(ε) = Fx,a(

ε
ϕ(α)

). Since lim
|α|→0

Fx,a(
ε

ϕ(α)
) = 1 it follows that, for every

a ∈ A there exists α(a) ∈ R such that Fx,a(
ε

ϕ(α(a))
) > 1 − λ. If we choose

β = min{|α(a)| : a ∈ A}, then we have

Fβx,a(ε) = Fx,a(
ε

ϕ(β)
) ≥ Fx,a(

ε

ϕ(α(a))
) > 1− λ,

for all a ∈ A, hence βx ∈ V .
Let us prove that, for any V ∈ VM there exists V0 ∈ V such that V0+V0 ⊂ V .
If V = V (ε, λ, A) and x ∈ V (ε, λ, A), then there exists η > 0 such that
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Fx,a(ε) > 1 − η > 1 − λ. If V0 = V ( ε
2
, η

2
, A) and x, y ∈ V0, a ∈ A by triangle

inequality we have

Fx+y,a(ε) ≥ T (Fx,a(
ε

2
), Fy,a(

ε

2
))

≥ T (1− η

2
, 1− η

2
) ≥ Tm(1− η

2
, 1− η

2
) > 1− η > 1− λ.

The above inequalities show us that V0 + V0 ⊂ V.
In that follows we show that V ∈ V and α ∈ R, α 6= 0 implies αV ∈ VM .
Let us remark that αV = αV (ε, λ, A) = {αx : Fx,a(ε) > 1− λ, a ∈ A) and

Fx,a(ε) > 1− λ ⇔ Fx,a(
ϕ(α)ε
ϕ(α)

) = Fαx,a(ϕ(α)ε) > 1− λ. This shows that αV =

V (ϕ(α)ε, λ, A), hence αV ∈ V .
The above statements show us that V is a base of neighborhoods of the ori-

gin for a topology on the linear space L. This is generated by the probabilistic
ϕ-2-norm F and is named F -topology on L.

We now consider the following example of probabilistic ϕ-2-normed space
having as base spaces sets of random variables with values in a Banach algebra.

The study of Banach algebra-valued random variables is of great impor-
tance in the theory of random equations since many of the Banach spaces
encountered are also algebras.

Let (X, ‖.‖) be a separable Banach space which is also an algebra. Let
(Ω,K, P ) be a complete probability measure space and let (X,B) be the mea-
surable space, where B is the σ -algebra of Borel subsets of the separable
Banach algebra (X, ||.||). We denote by L the linear space of all random vari-
ables defined on (Ω,K, P ) with values in (X,B) equal with the probability one.

Since, in a Banach algebra, the operation of multiplication is continuous,
the product of two X-valued random variables x(ω)y(ω) is a well-defined X-
valued random variable.

For all x, y ∈ E and t ∈ R, t > 0 we define

(B) Fx,y(t) = Fx,y(t) = P ({ω ∈ Ω : ||x(ω)y(ω)||p < t}),

where p ∈ (0, 1].

Theorem 2. The triple (L,F , Tm) is a probabilistic ϕ-2-normed space with
ϕ(α) = |α|p.

Proof. We have to verify that conditions of Definition 5 are satisfied.
Fαx,y(t) = P ({ω ∈ Ω : ||αx(ω)y(ω)||p < t}) = P ({ω ∈ Ω : ϕ(α)||x(ω)y(ω)||p <
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t}) = P ({ω ∈ Ω : ||x(ω)y(ω)|| < t
ϕ(α

) = Fx,y(
t

ϕ(α)
). Similarly, one shows that

Fx,αy(t) = Fx,y(
t

ϕ(α)
). So, the condition (N4) is satisfied.

For each x, y ∈ L, z ∈ M , and t1, t2 ∈ R+ − {0} we define the sets:

A = {ω ∈ Ω : ||x(ω)z(ω)||p < t1}, B = {ω ∈ Ω : ||y(ω)z(ω)||p < t2},

C = {ω ∈ Ω : ||[x(ω) + y(ω)]z(ω)||p < t1 + t2}

From the triangle inequality of the norm ||.|| it follows that A∩B ⊂ C. By
properties of the measure of probability P we have

P (C) ≥ P (A ∩B) ≥ P (A) + P (B)− P (A ∩B) ≥ P (A) + P (B)− 1

Taking in account that P (A) = Fxz(t1) P (B) = Fy,z(t1) and P (C) =
Fx+y,z(t1 + t2), hence, the inequality (N5) is satisfied.

Definition 6. A generalized probabilistic 2-normed space is a quadruple
(L,F , τ, τ ∗), where L is a linear space of dimension greater than one, τ and
τ ∗ are continuous triangle functions with τ 6 τ ∗ and F is a mapping defined
on L×L with values into D+ such that for every x, y and z in L the following
conditions hold :
(A1) Fx,y = H0 if, and only if, x and y are linearly dependent,
(A2) Fx,y = Fy,x,
(A3) F−x,y = Fx,y,
(A4) Fx+y,z ≥ τ(Fx,z, Fy,z),
(A5) Fx,y ≤ τ ∗(Fαx,y, F(1−α)x,z), α ∈ [0, 1].

Proposition 2. Every probabilistic 2-normed space is a generalized prob-
abilistic 2-normed space, that is, if the condition (S2) is satisfied then the
conditions (A3) and (A5) are also satisfied.

Theorem 3. Let (L,F , τ, τ ∗) be a generalized probabilistic 2-normed space
and let

M : L× L× L → D+, Mx,y,z = Fy−x,z−x,

then the triple (L,M, τ) is a probabilistic 2-metric space.
Proof. Let’s verify the axioms of a probabilistic 2-metric space.
From the assumption that L is of dimension greater than one, it follows that
for every two distinct points x, y ∈ L there exists z ∈ L such that z − x and
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y− x are linear independent, and therefore Mx,y,z = Fy−x,z−x 6= H0. If at least
two of the points x, y, z are equal then y − x z − x are linear dependent and
we have Mx,y,z = Fy−x,z−x = H0.
For every x, y, z ∈ L Fy−x,z−x = Fz−x,y−x, therefore Mx,y,z = Mx,z,y. We also
have Fz−x,y−x = F[(z−y)−(x−y),−(x−y)] > τ(Fz−y,x−y, Fx−y,x−y > τ(Fz−y,x−y, H0) =
Fz−y,x−y. So, we have Fz−x,y−x > Fz−y,x−y. On the other hand Fz−y,x−y =
F[(z−x)−(y−x),−(x−y)] > τ(Fz−x,y−x, Fx−y,x−y) > τ(Fz−x,y−x, H0) = Fz−x,y−x and
we also have Fz−y,x−y > Fz−x,y−x

By the above inequalities we have have Fz−y,x−y = Fz−x,y−x which implies
that Mx,y,z = My,z,x = Fx,z,y for all x, y, z ∈ L.

Now, we prove the tetrahedral inequality in a probabilistic 2-metric space
(P4) :

Mx,y,z = Fy−x,z−x = F[y−u−(x−u)],[z−u−(x−u)] >

τ(Fy−u,z−u−(x−u), F−(x−u),z−u−(x−u) > τ(τ(Fy−u,z−u, Fy−u,x−u), Fx−u,z−u) >

τ(Mx,y,z, Mx,u,z, Mx,y,u).

So, the axioms of a probabilistic 2-metric space (P1)− (P4) are satisfied.
Theorem 4.Let (L,F , τ, τ ∗) be a generalized probabilistic 2-normed space.

Then, the family (F ) is a fundamental system of neighborhoods of the null
vector in the linear space L.
The proof of this theorem is similar to that of Theorem 1 and we have omitted
it.
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