Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005-Alba Iulia, Romania

N-LINEAR CONNECTIONS AND JN-LINEAR CONNECTIONS ON SECOND
ORDER TANGENT BUNDLE T^{2}

Atanasiu Gheorghe

Abstract. On second order tangent bundle $T^{2} M$ we define an N -linear connection which have nine coefficients in comparation with the JN-linear connection which have three coefficients, only. To work with an N-linear connection on $T^{2} M$ is an advantage for the physical applications to electrodinamics, elasticity, quantum field theories, etc.

2000 Mathematical Subject Classification: 53B05, 53B15, 53B40
Let M be a real C^{∞} - manifold with n dimensions and $\left(T^{2} M, \pi, M\right)$ its tangent bundle, [1] - [3]. The local coordinates on $3 n$-dimensional manifolds $T^{2} M$ are denoted by $\left(x^{i}, y^{(1) i}, y^{(2) i}\right)=\left(x, y^{(1)}, y^{(2)}\right)=u,(i=1,2, \ldots, n)$.

Let $\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial y^{(1) i}}, \frac{\partial}{\partial y^{(2) i}}\right)$ be the natural basis of the tangent space $T T^{2} M$ at the point $u \in T^{2} M$ and let us consider the natural 2 -tangent structure on $T^{2} M, J: \chi\left(T^{2} M\right) \rightarrow \chi\left(T^{2} M\right)$ given by

$$
\begin{equation*}
J\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial}{\partial y^{(1) i}}, J\left(\frac{\partial}{\partial y^{(1) i}}\right)=\frac{\partial}{\partial y^{(2) i}}, J\left(\frac{\partial}{\partial y^{(2) i}}\right)=0 . \tag{1}
\end{equation*}
$$

We denote with N a nonlinear connection on $T^{2} M$ with the local coefficients $\left(\begin{array}{cc}N^{i} & N^{i} \\ (1)^{j} & (2)^{j}\end{array}\right)(i, j=1,2, \ldots, n),[3],[6]$. Hence, the tangent space of $T^{2} M$ in the point $u \in T^{2} M$ is given by the direct sum of the linear vector spaces:

$$
\begin{equation*}
T_{u} T^{2} M=N_{0}(u) \oplus N_{1}(u) \oplus V_{2}(u), \forall u \in T^{2} M \tag{2}
\end{equation*}
$$

An adapted basis to the direct decomposition (2) is given by $\left\{\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta y^{(1) i}}, \frac{\delta}{\delta y^{(2) i}}\right\}$, where

$$
\begin{align*}
& \frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-\underset{(1)}{N_{1}^{j}} i^{i} \frac{\partial}{\partial y^{(1) j}}-\underset{(2)}{N}{ }^{j} \frac{\partial}{\partial y^{(2) j}} \\
& \frac{\delta}{\delta y^{(1) i}}=\frac{\partial}{\partial y^{(1) i}}-\underset{(1)}{N^{j}}{ }_{i} \frac{\partial}{\partial y^{(2) j}} \tag{3}\\
& \frac{\delta}{\delta y^{(2) i}}=\frac{\partial}{\partial y^{(2) i}}
\end{align*}
$$

The dual basis of (3) is $\left\{\delta x^{i}, \delta y^{(1) i}, \delta y^{(2) i}\right\}$, where

$$
\begin{align*}
& \delta x^{i}=d x^{i}, \\
& \delta y^{(1) i}=d y^{(1) i}+\underset{(1)}{N^{i}}{ }^{j} d x^{j}, \tag{4}\\
& \delta y^{(2) i}=d y^{(2) i}+\underset{(1)}{N^{i}}{ }^{i} d y^{(1) j}+\left(\underset{(2)}{N^{i}}{ }_{m}+\underset{(1)}{N_{(1)}^{i}}{ }_{(1)}{\underset{(1)}{m}}^{m}\right) d x^{j} .
\end{align*}
$$

Definition.([2],[3]) A linear connection D on $T^{2} M, D: \chi\left(T^{2} M\right) \times \chi\left(T^{2} M\right) \rightarrow$ $\chi\left(T^{2} M\right)$ is called an N-linear connection on $T^{2} M$ if it preserves by parallelism the horizontal and vertical distributions N_{0}, N_{1} and V_{2} on $T^{2} M$.

An N-linear connection D on $T^{2} M$ is characterized by its coefficients, in the adapted basis (3), in the form:

$$
\begin{aligned}
& D_{\frac{\delta}{\delta x^{k}}} \frac{\delta}{\delta x^{j}}=\underset{(00)}{ }{ }^{i}{ }^{j k} \frac{\delta}{\delta x^{i}}, ~ D_{\frac{\delta}{\delta x^{k}}} \frac{\delta}{\delta y^{(1) j}}={ }_{(10)}{ }^{i}{ }^{j k} \frac{\delta}{\delta y^{(1) i}}, ~ D_{\frac{\delta}{\delta x^{k}}} \frac{\partial}{\partial y^{(2) j}}={ }_{(20)}{ }^{i}{ }^{j k} \frac{\partial}{\partial y^{(2) i}},
\end{aligned}
$$

$$
\begin{align*}
& D_{\frac{\delta}{\delta y^{(2) k}}} \frac{\delta}{\delta x^{j}}=\underset{(02)}{C}{ }^{i}{ }^{j} \frac{\delta}{\delta x^{i}}, D_{\frac{\delta}{\delta y^{(2) k}}} \frac{\delta}{\delta y^{(1) j}}=\underset{(12)}{C}{ }^{i} \frac{\delta}{\delta y^{(1) i}}, D_{\frac{\delta}{\delta y^{(1) k}}} \frac{\partial}{\partial y^{(2) j}}=\underset{(22)}{C^{i}}{ }^{j k} \frac{\partial}{\partial y^{(2)}} . \tag{5}
\end{align*}
$$

The system of nine functions

$$
\begin{equation*}
D \Gamma(N)=\left(\underset{(00)}{L_{j k}^{i}}, \underset{(10)}{L^{i}}{ }_{j k}, \underset{(20)}{L^{i}}{ }_{j k}, \underset{(01)}{C^{i}}{ }_{j k}, \underset{(11)}{C_{j k}^{i}}, \underset{(21)}{C_{j k}^{i}}, \underset{(02)}{C^{i}}{ }_{j k}, \underset{(12)}{C^{i}}{ }_{j k}, \underset{(22)}{C^{i}}{ }_{j k}\right), \tag{6}
\end{equation*}
$$

are called the coefficients of the N-linear connection D.
The torsion tensor T of an N - linear connection $D \Gamma(N)$ is expressed, as usually, by $T(X, Y)=D_{X} Y-D_{Y} X-[X, Y]$ and, in the adapted basis (3), it have fourteen components: $\underset{(0 \alpha)}{T}{ }^{i}, \underset{(\beta \alpha)}{P}{ }^{i}, ~ \underset{(2 \gamma)}{Q}{ }^{i}{ }_{j k}, \underset{(\beta \gamma)}{S}{ }^{i}{ }_{j k}, \quad(\alpha=0,1,2 ; \beta, \gamma=$

1,$\left.2 ; \underset{(21)_{j k}}{S_{i}^{i}}=0\right)($ see $(7.2),[2], p g .41)$. The curvature tensor R of $D \Gamma(N)$, in the adapted basis (3), have eighteen components: $\underset{(0 \alpha)^{j}}{R^{i}}{ }^{k l}, \underset{(\beta \alpha)^{j}}{P^{i}},{ }_{(2 \alpha)}^{Q^{i}}{ }_{k l}, \underset{(\beta \alpha)^{j}}{S_{k l}}{ }^{i}$, $(\alpha=0,1,2 ; \beta=1,2)($ see (7.11) , $[2], \mathrm{pg} .43)$.

Generally, an N-linear connection $D \Gamma(N)$ on $T^{2} M$ is not compatible with the natural 2 -tangent structure J given by (1).

Definition. An N-linear connection $D \Gamma(N)$ on $T^{2} M$ is called $J N$ - linear connection if it is absolut parallel with respect to J, i.e.:

$$
\begin{equation*}
D_{X} J=0, \forall X \in \chi\left(T^{2} M\right) \tag{7}
\end{equation*}
$$

Theorem 1 (Gh. Atanasiu [2], pg. 39, [3], pg.25) A JN- linear connection on $T^{2} M$ is characterized by the coefficients $J D \Gamma(N)$ given by (6), where

$$
\begin{align*}
& \underset{(00)}{L^{i}}{ }_{j k}=\underset{(10)}{L^{i}}{ }^{i}{ }^{i}=\underset{(20)}{L^{i}}{ }^{i j}\left(=L^{i}{ }_{j k}\right) \\
& \underset{(01)}{C^{i}}{ }^{j k}=\underset{(11)}{C^{i}}{ }^{j k}=\underset{(21)}{C^{i}}{ }^{j k}\left(=\underset{(1)}{C^{i}}{ }^{j k}\right) \tag{8}\\
& \underset{(02)}{C^{i}}{ }^{i}{ }^{j k}=\underset{(12)}{C^{i}}{ }^{j k}=\underset{(22)}{C^{i}}{ }^{j k}\left(={\underset{(2)}{ }{ }^{i}}^{j k}\right) .
\end{align*}
$$

It results that a $J N$ - linear connection on $T^{2} M$ has three essentially coefficients $J D \Gamma(N)=\left(L^{i}{ }_{j k}, C_{(1)}^{i}{ }_{j k}, C_{(2)}^{i}{ }_{j k}\right)$.

In the adapted basis (3), the torsion tensor T of a $J N$ - linear connection on $T^{2} M$ have thirteen components $\left(\underset{(21)}{Q^{i}}{ }_{j k}=\underset{(20)}{P^{i}}{ }^{j k}\right)$ and the curvature ten-

Of course, for the physical applications there exists an advantage to work with an N-linear connection (see [4], [5], [8]) in comparation with a $J N$ - linear connection (see [1], [6], [7]).

References

[1] Atanasiu,Gh., The Equations of Structure of an N-Linear Connection in the Bundle of Accelerations. Balkan J. Geom. and Its Appl., Vol.1, No.1, 1996, 11-19
[2] Atanasiu,Gh., New Aspect in the Differential Geometry of the Second Order. Sem. de Mecanică, Univ. de Vest din Timişoara, No. 82, 2001, 1-81.
[3] Atanasiu,Gh., Linear Connections in the Differential Geometry of Order Two. Lagrange and Hamilton Geometries and Their Applications, Radu Miron (Ed.), Handbooks. Treatises. Monographs, Fair Partners Publ., Bucure şti, 49, 2004, 11-30.
[4] Atanasiu,Gh., Voicu, N., Einstein Equations in the Geometry of Second Order, Studia Mathematica, Univ. Babeş-Bolyai, Cluj-Napoca, 2005 (to appear).
[5] Atanasiu,Gh., Brinzei, N., Maxwell Equations on the Second Order Tangent Bundle, Central European J. of Math., (to appear).
[6] Miron, R. and Atanasiu,Gh., Lagrange Geometry of Second Order. Math. Comput. Modelling, vol. 20, no.4, 1994,41-56.
[7] Miron, R. and Atanasiu,Gh., Geometrical Theory of Gravitational and Electromagnetic Fields in Higher Order Lagrange Spaces, Tsukuba J. of Math., vol. 20, 1996, 137-149.
[8] Voicu (Brinzei), N., Deviations of Geodesics in the Geometry of the Order Two(in Romannian), Ph. D. Thesis, Univ.Babeş-Bolyai, Cluj-Napoca, 2003, 1-134.

Gheorghe Atanasiu

Department of Algebra and Geometry
"Transilvania" University Brasov, România
e-mail: gh.atanasiu@info.unitbv.ro

