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Abstract. The turbulence phenomenon is a modern component of fluid
kinematics. In this area, the turbulent mixing is distinguished by its impor-
tance in applied engineering (including technical, social, economic applica-
tions). The turbulent mixing is an important feature of far from equilibrium
models.Studying a mixing for a flow implies the analysis of successive stretch-
ing and folding phenomena for its particles, the influence of parameters and
initial conditions, and also the issue of significant events – such as rare events
- and their physical mean. A comparison between two and three dimensional
flows produces useful remarks.
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1. The mixing concept

The turbulence term can be defined as “chaotic behavior of far from equi-
librium systems, with very few freedom degrees”. In this area there are two
important theories:

a) The transition theory from smooth laminar flows to chaotic flows, char-
acteristic to turbulence.

b) Statistic studies of the complete turbulent systems.
The statistical idea of flow is represented by the map:

x = Φt (X) , withX = Φt (t = 0) (X) (1)

We say that X is mapped in x after a time t.
In the continuum mechanics the relation (1) is named flow, and it must be

of class Ck. From the dynamic standpoint we have a map:

Φt (X) −→ x (2)
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which is a diffeomorphism of class Ck. Moreover, (1) must satisfy the
relation:

0 〈J 〈∞, J = det

(
∂xi

∂Xj

)
(3)

or, equivalently,

J = det(DΦt(X)) (4)

where D denotes the derivation with respect to the reference configuration,
in this case X. The relation (3) implies two particles, X1 and X2, which occupy
the same position x at a moment. Non-topological behavior (like break up, for
example) is not allowed.

The basic measure for the deformation with respect to X is the deformation
gradient, F:

F = (XΦt (X))T , Fij =

(
∂xi

∂Xj

)
, or F = DΦt (X) (5)

where ∇X denotes differentiation with respect to X. According to (3), F is
non singular. The basic measure for the deformation with respect to x is the
velocity gradient ( ∇x denote differentiation with respect to x).

By differentiation of x with respect to X we obtain the relation:

dxi =
∂xi

∂Xj

· dXj (6)

which gives the deformation of an infinitesimal filament of length |dX| and
orientation M(= dX/|dX|) from its reference position, to the present position,
dx , with the length |dx| and the orientation m(= dx/|dx|):

dx = F · dX (7)

This relation represents the basic deformation of a material filament. The
corresponding relation for the area of an infinitesimal material surface is:

da = (detF) ·
(
F−1

)T · dA. (8)
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In this case in the present configuration we have the area da = |da| and the
orientation n = da/|da|, and in the reference configuration, the area dA = |dA|,
and the orientation N = dA/|dA|.

Let us define the basic deformation measures: the length deformation
λ and surface deformation η, with the relations [3,4]:

λ = lim
|dX|→0

|dx|
|dX|

, η = lim
|dA|→0

|da|
|dA|

, (9)

which are obtained from

λ = (C : MM)
1
2 , η = (det F ) ·

(
C−1 : NN

) 1
2 , (10)

with C(= FT 2022F) the Cauchy-Green deformation tensor, and the vectors
M, N defined by

M = dX/ |dX| , N = dA/ |dA| (11)

The relation (10) has the scalar form:

λ = Cij ·Mi ·Nj, η = (det F ) ·
(
C−1

ij ·Ni ·Nj

)
, with

∑
M2

i = 1,
∑

N2
j = 1

(12)
The deformation tensor F and the associated tensors C, C−1 represent the

basic quantities in the deformation analysis for the infinitesimal elements.
In this framework the mixing concept implies the stretching and folding of

the material elements. If in an initial location P there is a material filament
dX and an area element dA, the specific length and surface deformations are
given by the relations:

D (ln λ)

Dt
= D : mm,

D (ln η)

Dt
= v −D : nn (13)

where D is the deformation tensor, obtained by decomposing the velocity
gradient in its symmetric and non-symmetric part:

v = D + Ω

D =

(
v+ ( v)T

)
2

(14)
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the symmetric tensor

Ω =

(
v− (v)T

)
2

the antisimetric tensor.
We say that the flow x = Φt(X) has a good mixing if the mean values

D(lnλ)/Dt and D(lnη)/Dt are not decreasing to zero, for any initial position
P and any initial orientations M and N.

As the above two quantities are bounded, the deformation efficiency can
be naturally quantified. Thus, there is defined [3] the deformation efficiency
in length, eλ = eλ(X, M, t) of the material element dX, as

eλ =
D(lnλ)/Dt

(D : D)1/2
≤ 1, (15)

and similarly, the deformation efficiency in surface, eη = eη(X, N, t) of the
area element dA: in the case of an isochoric flow (the jacobian equal 1), we
have:

eη =
D(lnη)/Dt

(D : D)1/2
≤ 1. (16)

2. The Tendril-Whorl flow. Analytical Features

2.1. The mathematical model

Two-dimensional flows increase their length by forming two basic kinds
of structures: tendrils and whorls and their combinations. In complex two-
dimensional fluid flows we can encounter tendrils within tendrils, whorls within
whorls, and all other possible combinations. The tendril-whorl flow (TW)
introduced by Khakhar, Rising and Ottino (1987) is a discontinuous succession
of extensional flows and twist maps. In the simplest case all the flows are
identical and the period of alternation extensional/rotational is also constant.
But even the simplest case is complex enough and, on the other hand, it can
be considered as the point of departure for several generalizations (smooth
variation, distribution of time periods, etc). The physical motivation for this
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flow is that locally, a velocity field can be decomposed into extension and
rotation. Also, from polar theorem point of view, a local deformation can be
decomposed into stretching and rotation [3].

In the simplest case of the TW model, the velocity field over a single period
is given by its extensional part:

vx = −ε · x, vy = ε · y, 0 < t < Text (17)

and its rotational part:

vr = 0, vθ = −ω (r) , Text < t < Text + Trot, (18)

where Text denotes the duration of the extensional component and Trot the
duration of rotational component.

The model consists of vortices producing whorls which are periodically
squeezed by the hyperbolic flow leading to the formation of tendrils, and the
process repeats. The function ω(r) is positive and specifies the rate of rotation.
Its form is quite arbitrary and the most important aspect is that it has a
maximum, that is, dω(r)

dr
= 0 for some r. Independent of the form of ω(r),

we can integrate the above velocity fields over one period and it gives:

fext (x, y) =
(x

α
, α · y

)
, frot (r, θ) = (r, θ +4θ) (19)

where

α = exp (ε · Text) , 4θ = −ω(r)·Trot

r

corresponding to the extensional and rotational part.

2.2. Evaluating the efficiency of mixing.

Let us consider the extensional part (17) of TW model:

vx = −ε · x, vy = ε · y, 0 < t < Text (20)

With the initial conditions x (0) = X, y (0) = Y, the Cauchy problem has
the solution :

x = X · exp (−ε · Text) , y = Y · exp (ε · Text) (21)
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Following this solution, the deformation tensors F,C and C−1 are quite
easy to calculate. According to [3], the calculated expression (5) of deformation
gradient is [2]:

F =

(
exp (−ε · Text) 0

0 exp (ε · Text)

)
(22)

and the tensor C−1 is:

C−1 =

(
exp (2ε · Text) 0

0 exp (−2ε · Text)

)
(23)

As it can be seen, the forms of these tensors are quite simple. In three
dimensions, there were found rather complicated expressions [1], depending on
few parameters.

In this context, the deformations λ2 and η2, in length and surface, have an
appropriate form. It was found [2]:

λ2 = exp (−2ε · Text) ·M2
1 + exp (2ε · Text) ·M2

2 , (24)

η2 = exp (2ε · Text) ·N2
1 + exp (−2ε · Text) ·N2

2 , (25)

taking into account that detF = 1, where the versor condition∑
M2

i = 1,
∑

N2
j = 1

is satisfied.
The relation (24) shows that, for the extensional component of TW model,

that is for a periodic flow, the deformations in length and surface are less
complex than for three-dimensional (non periodic ) flow. Moreover, the ex-
pressions in length and surface are quite similar. Therefore it is important to
calculate and compare the deformation efficiencies eλ and eη.

A simple calculus makes easier [1] to use in practice the relation (15)-(16)
for eλ and eη . We have:

eλ =
1

2λ2
· dλ2

dt
, eη =

1

2η2
· dη2

dt
(26)

Applying these formulas, the deformation efficiencies are:
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eλ = 2ε ·
(

1− 2 exp (−2εText) ·M2
1

exp (−2εText) ·M2
1 + exp (2εText) ·M2

2

)
(27)

eη = 2ε ·
(

1− 2 exp (−2εText) ·N2
2

exp (−2εText) ·N2
2 + exp (2εText) ·N2

1

)
(28)

where M2
1 + M2

2 = 1, N2
1 + N2

2 = 1.
The relations (27) and (28) give two functions of time, depending on the

parameters ε, Mi, Nj, 0 < ε < 1. Text represents the duration of the extensional
component of TW model. It is a time period which can vary in a discrete range.
Also, the relations show similar forms for the efficiencies, since λ2 and η2 are
similar.

Let us consider ε = 0.05. For some discrete time moments Text = 5, 10, 15, 20 sec
there were calculated the values for eλ and eη, for few versor values, taking into
account the versor condition. For comparing the evolution of the functions eλ

and eη, there were taken equal values for the length and surace vectors. The
results of calculus are statistically presented in Table1.
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3. Remarks

At this point a comparison with three-dimensional (non-periodic) flow is
necessary. In [1] the analysis of the deformation efficiency in length and surface
for a three-dimensional mathematical model associated to a vortex phenomena,
for an aquatic algae (Spirulina Platensis), was realized. The experiments were
realized with a special vortex tube [5]. For processing the algae Spirulina
Platensis, there was used a non-dimensional parameter τa, given by:

τa = t·Q
D3 ,

where t represents the time (sec), D the diameter (m3), and Q the debit
(m3/sec). By fragmenting the long chains of cellular filaments, there where ob-
tained isolated cell units, or, as rare events, the break –up of the cell membrane
(having a less than 100 angstrom).

The three-dimensional model considered:

.
x1 = G · x2

.
x2 = K ·G · x1

.
x3 = c, −1 < K < 1, c = const., (29)

with the initial conditions

(27) x1 (0) = X1, x2 (0) = X2, x3 (0) = X3,

a generalization to three dimensions of the two dimensional version used in
[3], is a widespread model for isochoric flows.

The analysis of the structural stability for the problem (26)-(27) was in
agreement with the experiments. It consists in studying the deformations
in length and surface of the material filaments, with the vortex conditions
imposed. The deformation tensor F, and the tensors C,C−1, had quite com-
plicated expressions [1]. Also, the deformation eficiences in length and surface
were quite complicated, depending on more parameters. The calculated ex-
pressions are the following:

eλ =

.
γ

2
·

[(
1 + K

4

)
·M2

1 + 1+K√
K
·M1M2 +

(
1 + 1

K

)
·M2

2

]
· exp (2

.
γt) +[

−
(
1 + K

4

)
·M2

1 + 1+K√
K
·M1M2 −

(
1 + 1

K

)
·M2

2

]
· exp (−2

.
γt)[

1+K
4
·M2

1 + 1+K
2
√

K
·M1M2 + 1+K

4K
·M2

2

]
· exp (2

.
γt) +[

1+K
4
·M2

1 − 1+K
2
√

K
·M1M2 + 1+K

4K
·M2

2

]
· exp (−2

.
γt) +(

1−K
2
·M2

1 − 1+K√
K
·M1M2 + K−1

2K
·M2

2 + M2
3

)
(30)
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eη =

.
γ

det C
·

 A (K) ·
(
2
(
6 + 1

K
·
)
· exp (2

.
γt)− 1

2K
· exp (−2

.
γt) + 3K−2

4K

)
·

(exp (4
.
γt)− exp (−4

.
γt))− 17

32
·
(
2 + 1

K

)
· exp (4

.
γt) +

17
64K

· exp (−4
.
γt)

 ·
(N2

1 + N2
2 ) +

(2 · (6 + 1
K

)
· exp (2

.
γt)− 1

2K
· exp (−2

.
γt) + 3K−2

4K
)·

exp (−4
.
γt) · (1+K)2

2K
− (

(
−2− 1

K

)
· exp (2

.
γt) + 3

2K
·

exp (−2
.
γt)− 3K−2

4K
· (1+K)2

2K
) · exp (−4

.
γt) + (1+K)2

2K2 −(
2 + 1

K

)
· (1+K2)

2K

 ·N1N2

[A (K) · (exp (4
.
γt) + exp (−4

.
γt)) +

17
64
· (exp (2

.
γt) + exp (−2

.
γt))−B (K)

]
·

(N2
1 + N2

2 )−[
1
4
· (exp (4

.
γt) + exp (−4

.
γt))− (exp (2

.
γt) + exp (−2

.
γt)) + 1

2

]
·

N1N2 · (1+K)2

2K
+ N2

3

(31)

where A(K) and B(K) depend on K, and the parameters G and K were
reunited in

.
γ = G ·

√
K.

Analysing this context, some remarks issue:
1) The amount of calculus for the extensional component of TW flow is

less than in the case of three dimensional (non periodic) flow. Therefore, the
behavior of the deformation efficiencies could expect to be smoother in the
case of two-dimensional flow.

2) For the moment there were considered only four values for the period
Text. If the function eλ seems to be increasing, eη has not a constant behavior.
Therefore, it would be interesting to study the evolution for larger (discrete)
values of Text.

3)An interesting fact is that, for equal values on both axes for the versors,
eλ and eη are equal ; therefore, a discrete plot for few period values would
give new features, and new comparisons with results and experiments would
appear;

4) A future aim is to construct an ”extended” statistical table like Table1,
taking into account more irrational versor values, and also more values for ε,
for establishing more accurate properties for the functions eλ and eη . Also,
searching for rare events, would give the possibility to compare the periodic
two-dimensional flow with three-dimensional (no periodic) flow. In [1] there
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were named rare events the events of breaking up the filaments of the aquatic
algae, corresponding to the intrerruption of the simulation program.

5) A very important fact is that in [1] the mixing, and especially the tur-
bulent mixing, occurs at irrational values

√
2,
√

3,
√

5 of the parameters and
versors. This is not surprising, taking into account that

√
2,
√

3,
√

5 etc can
be considered themselves as random values. Therefore, the approaching of
random distributed events could be favorable also for TW flow analysis.

6) The parameter Text can be measured in seconds, minutes or even in
larger units, depending on the context. The same fact can be found also in
[1] for three dimensional flow, where the turbulence occurs at small values of
the time units, being in agreement with experiments. Therefore an analysis for
larger Text would be useful.
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