Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 2005-Alba Iulia, Romania

ON A CLASS OF α-CONVEX FUNCTIONS

Mugur Acu

Abstract. In this paper we define a general class of α-convex functions with respect to a convex domain D contained in the right half plane by using a generalized Sălăgean operator introduced by F.M. Al-Oboudi in [5] and we give some properties of this class.

2000 Mathematical Subject Classification: 30C45
Key words and phrases: α-convex functions, Libera-Pascu integral operator, Briot-Bouquet differential subordination, generalized Sălăgean operator

1.Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U, $A=\left\{f \in \mathcal{H}(U): f(0)=f^{\prime}(0)-1=0\right\}, \mathcal{H}_{u}(U)=\{f \in \mathcal{H}(U): f$ is univalent in $U\}$ and $S=\{f \in A: f$ is univalent in $U\}$.

Let D^{n} be the Sălăgean differential operator ([10]) defined as:

$$
D^{n}: A \rightarrow A, n \in \mathbf{N}
$$

and

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
D^{n} f(z)=D\left(D^{n-1} f(z)\right) .
\end{gathered}
$$

Remark 1.1 If $f \in S, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, j=2,3, \ldots, z \in U$ then $D^{n} f(z)=$ $z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}$.

The aim of this paper is to define a general class of α-convex functions with respect to a convex domain D contained in the right half plane by using a generalized Sălăgean operator introduced by F.M. Al-Oboudi in[5] and to obtain some leftoperties of this class.

2.Preliminary results

We recall here the definitions of the well - known classes of starlike functions, convex functions and α-convex functions (see [6])

$$
\begin{gathered}
S^{*}=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in \mathbf{U}\right\}, \\
S^{c}=C V=K=\left\{f \in H(U) ; f(0)=f^{\prime}(0)-1=0, \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, z \in U\right\}, \\
M_{\alpha}=\left\{f \in H(U), f(0)=f^{\prime}(0)-1=0, \operatorname{Re} J(\alpha, f ; z)>0, z \in U, \alpha \in \mathbf{R}\right\}
\end{gathered}
$$

where

$$
J(\alpha, f ; z)=(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)
$$

We observe that $M_{0}=S^{*}$ and $M_{1}=S^{c}$ where S^{*} and S^{c} are the class of starlike functions, respectively the class of convex functions.

Remark 2.1. By using the subordination relation, we may define the class M_{α} thus if $f(z)=z+a_{2} z^{2}+\ldots, z \in U$, then $f \in M_{\alpha}$ if and only if $J(\alpha, f ; z) \prec \frac{1+z}{1-z}, z \in U$, where by "$\prec$ " we denote the subordination relation.

Let consider the Libera-Pascu integral operator $L_{\alpha}: A \rightarrow A$ defined as:

$$
\begin{equation*}
f(z)=L_{\alpha} F(z)=\frac{1+a}{z^{a}} \int_{0}^{z} F(t) \cdot t^{a-1} d t, \alpha \in \mathbf{C}, \operatorname{Re} \alpha \geq 0 \tag{1}
\end{equation*}
$$

In the case $a=1,2,3, \ldots$ this operator was introduced by S. D. Bernardi and it was studied by many authors in different general cases.

Definition 2.1.[5] Let $n \in \mathbf{N}$ and $\lambda \geq 0$. We denote with D_{λ}^{n} the operator defined by

$$
\begin{gathered}
D_{\lambda}^{n}: A \rightarrow A \\
D_{\lambda}^{0} f(z)=f(z), D_{\lambda}^{1} f(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z)=D_{\lambda} f(z) \\
D_{\lambda}^{n} f(z)=D_{\lambda}\left(D_{\lambda}^{n-1} f(z)\right)
\end{gathered}
$$

Remark 2.2.[5] We observe that D_{λ}^{n} is a linear operator and for $f(z)=$ $z+\sum_{j=2}^{\infty} a_{j} z^{j}$ we have

$$
D_{\lambda}^{n} f(z)=z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n} a_{j} z^{j}
$$

Also, it is easy to observe that if we consider $\lambda=1$ in the above definition we obtain the Sălăgean differential operator.

Definition 2.2 [3] Let $q(z) \in \mathcal{H}_{u}(U)$, with $q(0)=1$ and $q(U)=D$, where D is a convex domain contained in the right half plane, $n \in \mathbf{N}$ and $\lambda \geq 0$. We say that a function $f(z) \in A$ is in the class $S L_{n}^{*}(q)$ if $\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} \prec q(z), z \in U$.

Remark 2.3. Geometric interpretation: $f(z) \in S L_{n}^{*}(q)$ if and only if $\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}$ take all values in the convex domain D contained in the right halfplane.

Definition 2.3 [4] Let $q(z) \in \mathcal{H}_{u}(U)$, with $q(0)=1$ and $q(U)=D$, where D is a convex domain contained in the right half plane, $n \in \mathbf{N}$ and $\lambda \geq 0$. We say that a function $f(z) \in A$ is in the class $S L_{n}^{c}(q)$ if $\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)} \prec q(z), z \in U$.

REMARK 2.4. Geometric interpretation: $f(z) \in S L_{n}^{c}(q)$ if and only if $\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)}$ take all values in the convex domain D contained in the right half-
plane.

The next theorem is result of the so called "admissible functions method" introduced by P.T. Mocanu and S.S. Miller (see [7], [8], [9]).

Theorem 2.1. Let h convex in U and $\operatorname{Re}[\beta h(z)+\gamma]>0, z \in U$. If $p \in H(U)$ with $p(0)=h(0)$ and p satisfied the Briot-Bouquet differential subordination

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \text {, then } p(z) \prec h(z) .
$$

3. Main results

Definition 3.1 Let $q(z) \in \mathcal{H}_{u}(U)$, with $q(0)=1, q(U)=D$, where D is a convex domain contained in the right half plane, $n \in \mathbf{N}, \lambda \geq 0$ and $\alpha \in[0,1]$. We say that a function $f(z) \in A$ is in the class $M L_{n, \alpha}(q)$ if

$$
J_{n, \lambda}(\alpha, f ; z)=(1-\alpha) \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}+\alpha \frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)} \prec q(z), z \in U .
$$

Remark 3.1 Geometric interpretation: $f(z) \in M L_{n, \alpha}(q)$ if and only if $J_{n, \lambda}(\alpha, f ; z)$ take all values in the convex domain D contained in the right half-plane.

Remark 3.2 It is easy to observe that if we choose different function $q(z)$ we obtain variously classes of α-convex functions, such as (for example), for $\lambda=1$ and $n=0$, the class of α-convex functions, the class of α-uniform convex functions with respect to a convex domain (see [2]), and, for $\lambda=1$, the class $U D_{n, \alpha}(\beta, \gamma), \beta \geq 0, \gamma \in[-1,1), \beta+\gamma \geq 0$ (see [1]), the class of α-n-uniformly convex functions with respect to a convex domain (see [2]).

Remark 3.3 We have $M L_{n, 0}(q)=S L_{n}^{*}(q)$ and $M L_{n, 1}(q)=S L_{n}^{c}(q)$.
Remark 3.4 For $q_{1}(z) \prec q_{2}(z)$ we have $M L_{n, \alpha}\left(q_{1}\right) \subset M L_{n, \alpha}\left(q_{2}\right)$. From the above we obtain $M L_{n, \alpha}(q) \subset M L_{n, \alpha}\left(\frac{1+z}{1-z}\right)$

Theorem 3.1 For all $\alpha, \alpha^{\prime} \in[0,1]$, with $\alpha<\alpha^{\prime}$, we have $M L_{n, \alpha^{\prime}}(q) \subset$ $M L_{n, \alpha}(q)$.

Proof. From $f(z) \in M L_{n, \alpha^{\prime}}(q)$ we have

$$
\begin{equation*}
J_{n, \lambda}(\alpha, f ; z)=(1-\alpha) \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}+\alpha \frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)} \prec q(z) \tag{2}
\end{equation*}
$$

where $q(z)$ is univalent in U with $q(0)=1$ and maps the unit disc U into the convex domain D contained in the right half-plane.

With notation

$$
p(z)=\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}
$$

where

$$
p(z)=1+p_{1} z+\ldots \operatorname{andf}(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}
$$

$$
\begin{aligned}
& \text { we have } \\
& \begin{array}{c}
p(z)+\alpha^{\prime} \lambda \cdot \frac{z p^{\prime}(z)}{p(z)}= \\
D_{\lambda}^{n+1} f(z) \\
D_{\lambda}^{n} f(z)
\end{array} \alpha^{\prime} \lambda \frac{D_{\lambda}^{n} f(z)}{D_{\lambda}^{n+1} f(z)} \cdot z \frac{\left(D_{\lambda}^{n+1} f(z)\right)^{\prime} D_{\lambda}^{n} f(z)-D_{\lambda}^{n+1} f(z)\left(D_{\lambda}^{n} f(z)^{\prime}\right.}{\left(D_{\lambda}^{n} f(z)\right)^{2}}= \\
& =\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}+\alpha^{\prime} \lambda \frac{D_{\lambda}^{n} f(z)}{D_{\lambda}^{n+1} f(z)}\left(\frac{z\left(D_{\lambda}^{n+1} f(z)^{\prime}\right.}{D_{\lambda}^{n} f(z)}-\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} \cdot \frac{z\left(D_{\lambda}^{n} f(z)^{\prime}\right.}{D_{\lambda}^{n} f(z)}\right)= \\
& =\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}+\alpha^{\prime} \lambda \cdot \frac{D_{\lambda}^{n} f(z)}{D_{\lambda}^{n+1} f(z)}\left(\frac{z\left(z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n+1} a_{j} z^{j}\right)^{\prime}}{D_{\lambda}^{n} f(z)}-\right. \\
& \left.-\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} \cdot \frac{\left.z\left(z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n} a_{j} z^{j}\right)^{\prime}\right)}{D_{\lambda}^{n} f(z)}\right)= \\
&
\end{aligned}
$$

or

$$
\begin{align*}
p(z)+\alpha^{\prime} \cdot \lambda \cdot \frac{z p^{(z)}}{p(z)}= & \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}+\alpha^{\prime} \lambda \cdot \frac{D_{\lambda}^{n} f(z)}{D_{\lambda}^{n+1} f(z)}\left(\frac{z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{n+1} a_{j} z^{j}}{D_{\lambda}^{n} f(z)}-\right. \\
& \left.-\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} \frac{z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{n} a_{j} z^{j}}{D_{\lambda}^{n} f(z)}\right) \tag{3}
\end{align*}
$$

We have

$$
\begin{gathered}
z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{n+1} a_{j} z^{j}=z+\sum_{j=2}^{\infty}((j-1)+1)(1+(j-1) \lambda)^{n+1} a_{j} z^{j}= \\
=z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n+1} a_{j} z^{j}+\sum_{j=2}^{\infty}(j-1)(1+(j-1) \lambda)^{n+1} a_{j} z^{j}= \\
=z+D_{\lambda}^{n+1} f(z)-z+\sum_{j=2}^{\infty}(j-1)(1+(j-1) \lambda)^{n+1} a_{j} z^{j}= \\
=D_{\lambda}^{n+1} f(z)+\frac{1}{\lambda} \sum_{j=2}^{\infty}((j-1) \lambda)(1+(j-1) \lambda)^{n+1} a_{j} z^{j}= \\
=D_{\lambda}^{n+1} f(z)+\frac{1}{\lambda} \sum_{j=2}^{\infty}(1+(j-1) \lambda-1)(1+(j-1) \lambda)^{n+1} a_{j} z^{j}= \\
=D_{\lambda}^{n+1} f(z)-\frac{1}{\lambda} \sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n+1} a_{j} z^{j}+\frac{1}{\lambda} \sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n+2} a_{j} z^{j}= \\
=D_{\lambda}^{n+1} f(z)-\frac{1}{\lambda}\left(D_{\lambda}^{n+1} f(z)-z\right)+\frac{1}{\lambda}\left(D_{\lambda}^{n+2} f(z)-z\right)= \\
=D_{\lambda}^{n+1} f(z)-\frac{1}{\lambda} D_{\lambda}^{n+1} f(z)+\frac{z}{\lambda}+\frac{1}{\lambda} D_{\lambda}^{n+2} f(z)-\frac{z}{\lambda}= \\
=\frac{\lambda-1}{\lambda} D_{\lambda}^{n+1} f(z)+\frac{1}{\lambda} D_{\lambda}^{n+2} f(z)=
\end{gathered}
$$

$$
\left.=\frac{1}{\lambda}(\lambda-1) D_{\lambda}^{n+1} f(z)+D_{\lambda}^{n+2} f(z)\right) .
$$

Similarly we have

$$
\left.z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{n} a_{j} z^{j}=\frac{1}{\lambda}(\lambda-1) D_{\lambda}^{n} f(z)+D_{\lambda}^{n+1} f(z)\right) .
$$

From (3) we obtain

$$
\begin{gathered}
p(z)+\alpha^{\prime} \cdot \lambda \cdot \frac{z p^{\prime}(z)}{p(z)}= \\
=\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}+\alpha^{\prime} \lambda \frac{D_{\lambda}^{n} f(z)}{D_{\lambda}^{n+1} f(z)} \frac{1}{\lambda} \cdot\left((\lambda-1) \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}+\right. \\
\left.+\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n} f(z)}-\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}(\lambda-1)-\left(\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}\right)^{2}\right)= \\
=\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}+\alpha^{\prime} \frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)}-\alpha^{\prime} \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}= \\
=\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}\left(1-\alpha^{\prime}\right)+\alpha^{\prime} \frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)}=J_{n, \lambda}\left(\alpha^{\prime}, f ; z\right)
\end{gathered}
$$

From (2) we have

$$
p(z)+\frac{z p^{\prime}(z)}{\frac{1}{\alpha^{\prime} \lambda} \cdot p(z)} \prec q(z)
$$

with $p(0)=q(0), \operatorname{Re} q(z)>0, z \in U, \alpha^{\prime}>0$ and $\lambda \geq 0$. In this conditions from Theorem 2.1 we obtain $p(z) \prec q(z)$ or $p(z)$ take all values in D.

If we consider the function $g:\left[0, \alpha^{\prime}\right] \rightarrow \mathbf{C}$,

$$
g(u)=p(z)+u \cdot \frac{\lambda z p^{\prime}(z)}{p(z)}
$$

with $g(0)=p(z) \in D$ and $g\left(\alpha^{\prime}\right)=J_{n, \lambda}\left(\alpha^{\prime}, f ; z\right) \in D$, it easy to see that

$$
g(\alpha)=p(z)+\alpha \cdot \frac{\lambda z p^{\prime}(z)}{p(z)} \in D, 0 \leq \alpha<\alpha^{\prime} .
$$

Thus we have

$$
J_{n, \lambda}(\alpha, f ; z) \prec q(z)
$$

or

$$
f(z) \in M L_{n, \alpha}(q) .
$$

From the above theorem we have
Corollary 3.1 For every $n \in \mathbf{N}$ and $\alpha \in[0,1]$, we have

$$
M L_{n, \alpha}(q) \subset M L_{n, 0}(q)=S L_{n}^{*}(q)
$$

Remark 3.5 If we consider $\lambda=1$ and $n=0$ we obtain the Theorem 3.1 from [2]. Also, for $\lambda=1$ and $n \in \mathbf{N}$, we obtain the Theorem 3.3 from [2].

Remark 3.6 If we consider $\lambda=1$ and $D=D_{\beta, \gamma}$ (see [1] or [2]) in the above theorem we obtain the Theorem 3.1 from [1].

THEOREM 3.2 Let $n \in \mathbf{N}, \alpha \in[0,1]$ and $\lambda \geq 1$. If $F(z) \in M L_{n, \alpha}(q)$ then $f(z)=L_{a} F(z) \in S L_{n}^{*}(q)$, where L_{a} is the Libera-Pascu integral operator defined by (1).
Proof.
From (1) we have

$$
(1+a) F(z)=a f(z)+z f^{\prime}(z)
$$

and, by using the linear operator D_{λ}^{n+1} and if we consider $f(z)=\sum_{j=2}^{\infty} a_{j} z^{j}$, we obtain

$$
\begin{gathered}
(1+a) D_{\lambda}^{n+1} F(z)=a D_{\lambda}^{n+1} f(z)+D_{\lambda}^{n+1}\left(z+\sum_{j=2}^{\infty} j a_{j} z^{j}\right)= \\
=a D_{\lambda}^{n+1} f(z)+z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n+1} j a_{j} z^{j}
\end{gathered}
$$

We have (see the proof of the above theorem)

$$
\begin{equation*}
\left.z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{n+1} a_{j} z^{j}=\frac{1}{\lambda}(\lambda-1) D_{\lambda}^{n+1} f(z)+D_{\lambda}^{n+2} f(z)\right) \tag{4}
\end{equation*}
$$

Thus

$$
\begin{gathered}
\left.(1+a) D_{\lambda}^{n+1} F(z)=a D_{\lambda}^{n+1} f(z)+\frac{1}{\lambda}(\lambda-1) D_{\lambda}^{n+1} f(z)+D_{\lambda}^{n+2} f(z)\right)= \\
=\left(a+\frac{\lambda-1}{\lambda}\right) D_{\lambda}^{n+1} f(z)+\frac{1}{\lambda} D_{\lambda}^{n+2} f(z)
\end{gathered}
$$

or

$$
\lambda(1+a) D_{\lambda}^{n+1} F(z)=((a+1) \lambda-1) D_{\lambda}^{n+1} f(z)+D_{\lambda}^{n+2} f(z) .
$$

Similarly, we obtain

$$
\lambda(1+a) D_{\lambda}^{n} F(z)=((a+1) \lambda-1) D_{\lambda}^{n} f(z)+D_{\lambda}^{n+1} f(z)
$$

Then

$$
\frac{D_{\lambda}^{n+1} F(z)}{D_{\lambda}^{n} F(z)}=\frac{\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)} \cdot \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}+((a+1) \lambda-1) \cdot \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}}{((a+1) \lambda-1)+\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}}
$$

With notation

$$
\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}=p(z), p(0)=1
$$

we obtain

$$
\begin{equation*}
\frac{D_{\lambda}^{n+1} F(z)}{D_{\lambda}^{n} F(z)}=\frac{\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)} \cdot p(z)+(a+1) \lambda-1 \cdot p(z)}{p(z)+(a+1) \lambda-1} \tag{5}
\end{equation*}
$$

Also, we obtain

$$
\begin{equation*}
\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)}=\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n} f(z)} \cdot \frac{D_{\lambda}^{n} f(z)}{D_{\lambda}^{n+1} f(z)}=\frac{1}{p(z)} \cdot \frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n} f(z)} \tag{6}
\end{equation*}
$$

We have

$$
\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n} f(z)}=\frac{z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n+2} a_{j} z^{j}}{z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n} a_{j} z^{j}}
$$

and

$$
\begin{gathered}
z p^{\prime}(z)=\frac{z\left(D_{\lambda}^{n+1} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)}-\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} \cdot \frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)}= \\
=\frac{z\left(1+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n+1} j a_{j} z^{j-1}\right)}{D_{\lambda}^{n} f(z)}- \\
-p(z) \cdot \frac{z\left(1+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n} j a_{j} z^{j-1}\right)}{D_{\lambda}^{n} f(z)}
\end{gathered}
$$

or
$z p^{\prime}(z)=\frac{z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{n+1} a_{j} z^{j}}{D_{\lambda}^{n} f(z)}-p(z) \cdot \frac{z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{n} a_{j} z^{j}}{D_{\lambda}^{n} f(z)}$.
By using (4) and (7) we obtain

$$
\begin{gathered}
z p^{\prime}(z)=\frac{1}{\lambda}\left(\frac{(\lambda-1) D_{\lambda}^{n+1} f(z)+D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n} f(z)}-p(z) \frac{(\lambda-1) D_{\lambda}^{n} f(z)+D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}\right)= \\
=\frac{1}{\lambda}\left((\lambda-1) p(z)+\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n} f(z)}-p(z)((\lambda-1)+p(z))\right)= \\
=\frac{1}{\lambda}\left(\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n} f(z)}-p(z)^{2}\right)
\end{gathered}
$$

Thus

$$
\lambda z p^{\prime}(z)=\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n} f(z)}-p(z)^{2}
$$

or

$$
\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n} f(z)}=p(z)^{2}+\lambda z p^{\prime}(z)
$$

From (6) we obtain

$$
\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)}=\frac{1}{p(z)}\left(p(z)^{2}+\lambda z p^{\prime}(z)\right)
$$

Then, from (5), we obtain
$\frac{D_{\lambda}^{n+1} F(z)}{D_{\lambda}^{n} F(z)}=\frac{p(z)^{2}+\lambda z p^{\prime}(z)+((a+1) \lambda-1) p(z)}{p(z)+((a+1) \lambda-1)}=p(z)+\lambda \frac{z p^{\prime}(z)}{p(z)+((a+1) \lambda-1)}$
where $\alpha \in \mathbf{C}, \operatorname{Re} a \geq 0$ and $\lambda \geq 1$.
If we denote $\frac{D_{\lambda}^{n+1} F(z)}{D_{\lambda}^{n} F(z)}=h(z)$, with $h(0)=1$, we have from $F(z) \in M L_{n, \alpha}(q)$ (see the proof of the above Theorem):

$$
J_{n, \lambda}(\alpha, F ; z)=h(z)+\alpha \cdot \lambda \cdot \frac{z h^{\prime}(z)}{h(z)} \prec q(z)
$$

Using the hypothesis, from Theorem 2.1, we obtain

$$
h(z) \prec q(z)
$$

or

$$
p(z)+\lambda \frac{z p^{\prime}(z)}{p(z)+((a+1) \lambda-1)} \prec q(z) .
$$

By using the Theorem 2.1 and the hypothesis we have

$$
p(z) \prec q(z)
$$

or

$$
\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} \prec q(z)
$$

This means $f(z)=L_{\alpha} F(z) \in S L_{n}^{*}(q)$.
Remark 3.7 If we consider $\lambda=1$ and $n=0$ we obtain the Theorem 3.2 from [2]. Also, for $\lambda=1$ and $n \in \mathbf{N}$, we obtain the Theorem 3.4 from [2].

Remark 3.8 If we consider $\lambda=1$ and $D=D_{\beta, \gamma}$ (see [1] or [2]) in the above theorem we obtain the Theorem 3.2 from [1].

References

[1]M. Acu, On a subclass of α-uniform convex functions, Archivum Mathematicum, no. 2, Tomus 41/2005, (to appear).
[2]M. Acu, Some subclasses of α-uniformly convex functions, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, Vol. 21(2005), (to appear).
[3]M. Acu, On a subclass of n-starlike functions, (to appear).
[4]M. Acu, On a subclass of n-convex functions, (to appear).
[5]F.M. Al-Oboudi, On univalent funtions defined by a generalized S'al'agean operator, Ind. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
[6]P. Duren, Univalent functions, Springer Verlag, Berlin Heildelberg, 1984.
[7]S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Mich. Math. 28(1981), 157-171.
[8]S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equation, J. Differential Equations 56(1985), 297-308.
[9]S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordination, Mich. Math. 32(1985), 185-195.
[10]Gr. Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj-Napoca, 1983.

Mugur Acu
University "Lucian Blaga" of Sibiu
Department of Mathematics
Str. Dr. I. Raṭiu, No. 5-7
550012 - Sibiu, Romania
E-mail address: acu_mugur@yahoo.com

