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1. Introduction and preliminaries

Let U be the unit disc in the complex plane:

U = {z ∈ C : |z| < 1}.

Let H(U) be the space of holomorphic functions in U .
Also let

An = {f ∈ H(U), f(z) = z + an+1z
n+1 + . . . , z ∈ U}

with A1 = A.
For a ∈ C and n ∈ N, we denote by

H[a, n] = {f ∈ H(U), f(z) = a+ anz
n + an+1z

n+1 + . . . , z ∈ U}.

Let

K =

{
f ∈ A, Re

zf ′′(z)

f ′(z)
+ 1 > 0, z ∈ U

}
,

denote the class of normalized convex functions in U .
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If f and g are analytic functions in U , then we say that f is subordinate
to g, written f ≺ g, if there is a function w analytic in U , with w(0) = 0,
|w(z)| < 1, for all z ∈ U such that f(z) = g[w(z)] for z ∈ U . If g is univalent,
then f ≺ g if and only if f(0) = g(0) and f(U) ⊆ g(U).

Let ψ : C3 × U → C and let h be univalent in U . If p is analytic in U
and satisfies the (second-order) differential subordination

(i) ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), z ∈ U ,
then p is called a solution of the differential subordination. The univalent
function q is called a dominant of the solutions of the differential subordina-
tion, or more simply a dominant, if p ≺ q for all p satisfying (i).

A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (i) is said to be
the best dominant of (i). (Note that the best dominant is unique up to a
rotation of U).

To prove our main results, we need the following lemmas:

Lemma A. (Hallenbeck and Ruscheweyh [2, Th. 3.1.6, p.71]) Let h be

a convex function with h(0) = a, and let γ ∈ C∗ be a complex number with

Re γ ≥ 0. If p ∈ H[a, n] and

p(z) +
1

γ
zp′(z) ≺ h(z), z ∈ U

then

p(z) ≺ g(z) ≺ h(z), z ∈ U

where

g(z) =
γ

nzγ/n

∫ z

0

h(t)tγ/n−1dt, z ∈ U.

Lemma B. (Miller and Mocanu [2]) Let g be a convex function in U and

let

h(z) = g(z) + nαzg′(z), z ∈ U,

where α > 0 and n is a positive integer.
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If

p(z) = g(0) + pnz
n + pn+1z

n+1 + . . . , z ∈ U

is holomorphic in U and

p(z) + αzp′(z) ≺ h(z), z ∈ U

then

p(z) ≺ g(z)

and this result is sharp.

Definition 1. (Gr. Şt. Sălăgean [4]) For f ∈ A, n ∈ N∗ ∪ {0}, let Sn

be the operator given by Sn : A→ A

S0f(z) = f(z)

S1f(z) = zf ′(z)

. . .

Sn+1f(z) = z[Snf(z)]′, z ∈ U.

Remark 1. If f ∈ A,

f(z) = z +
∞∑

j=2

ajz
j,

then

Snf(z) = z +
∞∑

j=2

jnajz
j, z ∈ U.

If n is replaced by a positive number, we obtain:

Definition 2. For f ∈ A, α ≥ 0, let Sα be the operator given by
Sα : A→ A

S0f(z) = f(z)

. . .

Sαf(z) = z[Sα−1f(z)]′, z ∈ U.
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Remark 2. If f ∈ A,

f(z) = z +
∞∑

j=2

ajz
j,

then

Sαf(z) = z +
∞∑

j=2

jαajz
j, z ∈ U.

Definition 3. (Şt. Ruscheweyh [3]) For f ∈ A, n ∈ N∗ ∪ {0}, let Rn be
the operator given by Rn : A→ A

R0f(z) = f(z)

R1f(z) = zf ′(z)

. . .

(n+ 1)Rn+1f(z) = z[Rnf(z)]′ + nRnf(z), z ∈ U.

Remark 3. If f ∈ A,

f(z) = z +
∞∑

j=2

ajz
j,

then

Rnf(z) = z +
∞∑

j=2

Cn
n+j−1ajz

j, z ∈ U.

If n is replaced by a positive real number, we obtain:

Definition 4. For f ∈ A, α ≥ 0, let Rα be the operator given by
Rα : A→ A

R0f(z) = f(z)

. . .

(α+ 1)Rα+1f(z) = z[Rαf(z)]′ + αRαf(z), z ∈ U.

Remark 4. If f ∈ A,

f(z) = z +
∞∑

j=2

ajz
j,

132



G.I. Oros, Gh. Oros - Differential subordinations obtained by using...

then

Rαf(z) = z +
∞∑

j=2

Cα
α+j−1ajz

j, z ∈ U.

Definition 5. [1] Let n ∈ N and λ ≥ 0. Also let Dn
λ denote the operator

defined by Dn
λ : A→ A

D0
λf(z) = f(z),

D1
λf(z) = (1− λ)f(z) + λzf ′(z) = Dλf(z)

. . .

Dn
λf(z) = (1− λ)Dn−1

λ f(z) + λz(Dn−1
λ )′ = Dλ[D

n−1
λ f(z)].

Remark 5. [1] We observe that Dn
λ is a linear operator and for

f(z) = z +
∞∑

j=2

ajz
j

we have

Dn
λf(z) = z +

∞∑
j=2

[1 + (j − 1)λ]najz
j.

Further, it is not difficult to deduce that if λ = 1 in the above definition,
then we obtain the Sălăgean differential operator.

2. Main results

Definition 6. Let α ≥ 0, λ ≥ 0. Also let Dα
λ denote the operator given

by

Dα
λ : A→ A,

Dα
λf(z) = (1− λ)Sαf(z) + λRαf(z), z ∈ U.

Here Sα and Rα are the operators given by Definition 2 and Definition 4.

Remark 6. We observe that Dα
λ is a linear operator and for

f(z) = z +
∞∑

j=2

ajz
j
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we have

Dα
λf(z) = z +

∞∑
j=2

[(1− λ)jα + λCα
α+j−1]ajz

j, z ∈ U.

Remark 7. For λ = 0, Dα
0 f(z) = Sαf(z), λ = 1, Dα

1 f(z) = Rαf(z),
z ∈ U .

Remark 8. For α = 0,

D0
λf(z) = (1− λ)S0f(z) + λR0f(z) = f(z) = R0f(z) = S0f(z), z ∈ U

and for α = 1,

D1
λf(z) = (1− λ)S1f(z) + λR1f(z) = zf ′(z) = R1f(z) = S1f(z), z ∈ U.

Theorem 1. Let g be a convex function such that g(0) = 1, and let h be

the function

h(z) = g(z) + zg′(z), z ∈ U.

If α ≥ 0, λ ≥ 0, f ∈ A and the differential subordination

[Dα+1
λ f(z)]′ +

λαz(Rαf(z))′′

α+ 1
≺ h(z), z ∈ U (1)

holds, then

[Dα
λf(z)]′ ≺ g(z), z ∈ U.

This result is sharp.

Proof. By using the properties of operator Dα
λ , we obtain

Dα+1
λ f(z) = (1− λ)Sα+1f(z) + λRα+1f(z), z ∈ U. (2)

Then (1) becomes

[(1− λ)Sα+1f(z) + λRα+1f(z)]′ +
λαz[Rαf(z)]′′

α+ 1
≺ h(z), z ∈ U. (3)
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After a short calculation, we obtain

(1− λ)[Sα+1f(z)]′ + λ[Rα+1f(z)]′ +
λαz[Rαf(z)]′′

α+ 1
≺ h(z), z ∈ U. (4)

Taking into account the properties of operators Sα and Rα, we deduce in
view of (4) that

(1− λ)[z(Sαf(z))′]′ + λ
[z(Rαf(z))′ + αRαf(z)]′

α+ 1
(5)

+
λαz[Rαf(z)]′′

α+ 1
≺ h(z), z ∈ U.

Making an elementary computation into above, we obtain from (5) that

(1− λ)[Sαf(z)]′ + (1− λ)z[Sαf(z)]′′ (6)

+λ
[Rαf(z)]′ + α[Rαf(z)]′ + z(Rαf ′′(z))

α+ 1
+
λαz[Rαf(z)]′′

α+ 1
≺ h(z), z ∈ U.

The above relation is equivalent to

(1− λ)[Sαf(z)]′ + λ[Rαf(z)]′ (7)

+z[(1− λ)(Sαf(z))′′ + λ(Rαf(z))′′] ≺ h(z), z ∈ U.

Let
p(z) = (1− λ)[Sαf(z)]′ + λ[Rαf(z)]′ = [Dα

λf(z)]′ (8)

= (1− λ)

[
z +

∞∑
j=2

jαajz
j

]′
+ λ

[
z +

∞∑
j=2

Cα
α+j−1ajz

j

]

= (1− λ)

[
1 +

∞∑
j=2

jα+1ajz
j−1

]
+ λ

[
1 +

∞∑
j=2

jCα
α+j−1ajz

j−1

]

= 1 +
∑

[(1− λ)jα+1 + λjCα
α+j−1]ajz

j−1 = 1 + p1z + p2z
2 + . . .

In view of (8), we deduce that p ∈ H[1, 1].
Using the notation in (8), the differential subordination (7) becomes

p(z) + zp′(z) ≺ h(z) = g(z) + zg′(z).

135



G.I. Oros, Gh. Oros - Differential subordinations obtained by using...

By using Lemma B, we have

p(z) ≺ g(z), z ∈ U

i.e.
[Dα

λf(z)]′ ≺ g(z), z ∈ U
and this result is sharp.

Example 1. If λ = 1, α = 1, f ∈ A we deduce that

zf ′(z) + zf ′′(z) +
z2f ′′(z)

2
+
z2f ′′′(z)

2
≺ 1 + 2z,

which yields that
f ′(z) + zf ′′(z) ≺ 1 + z, z ∈ U.

Theorem 2. Let g be a convex function, g(0) = 1 and let h be the

function

h(z) = g(z) + zg′(z), z ∈ U.

If f ∈ A, α ≥ 0, λ ≥ 0 and satisfies the differential subordination

[Dα
λf(z)]′ ≺ h(z), z ∈ U (9)

then
Dα

λf(z)

z
≺ g(z), z ∈ U

and this result is sharp.

Proof. Taking into account the properties of operator Dα
λ , we have

Dα
λf(z) = z +

∞∑
j=2

[(1− λ)jα + λCα
α+j−1]ajz

j.

Let

p(z) =
Dα

λf(z)

z
=

z +
∞∑

j=2

[(1− λ)jα + λCα
α+j−1]ajz

j

z
(10)
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= 1 + p1z + p2z
2 + . . . , z ∈ U.

From (10) we have p ∈ H[1, 1].
Let

Dα
λf(z) = zp(z), z ∈ U. (11)

Differentiating (11), we obtain

[Dα
λf(z)]′ = p(z) + zp′(z), z ∈ U. (12)

Then (9) becomes

p(z) + zp′(z) ≺ h(z), z ∈ U. (13)

By using Lemma B, we have

p(z) ≺ g(z), z ∈ U,

i.e.
Dα

λf(z)

z
≺ g(z), z ∈ U.

Example 2. For α = 1, λ = 1, f ∈ A, we deduce that

f ′(z) + zf ′′(z) ≺ 1 + 2z − z2

(1− z)2
, z ∈ U

implies

f ′(z) ≺ 1 + z

1− z
, z ∈ U.

Theorem 3. Let

h(z) =
1 + (2β − 1)z

1 + z
,

be convex in U , with h(0) = 1, 0 ≤ β < 1.

Assume α ≥ 0, λ ≥ 0, and f ∈ A satisfies the differential subordination

[Dα+1
λ f(z)]′ +

λαz[Rαf(z)]′′

α+ 1
≺ h(z), z ∈ U. (14)

Then

[Dα
λf(z)]′ ≺ q(z), z ∈ U,
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where q is given by

q(z) = 2β − 1 + 2(1− β)
ln(1 + z)

z
, z ∈ U. (15)

The function q is convex and is the best dominant.

Proof. By following similar steps to those in the proof of Theorem 1 and
using (8), the differential subordination (14) becomes:

p(z) + zp′(z) ≺ h(z) =
1 + (2β − 1)z

1 + z
, z ∈ U.

In view of Lemma A, we have p(z) ≺ q(z), i.e.,

[Dα
λf(z)]′ ≺ q(z) =

1

z

∫ z

0

h(t)t1−1dt

=
1

z

∫ z

0

1 + (2β − 1)t

1 + t
dt =

1

z

∫ z

0

(
2β − 1 +

2(1− β)

1 + t

)
dt

= 2β − 1 + 2(1− β)
1

z
ln(z + 1), z ∈ U.

Theorem 4. Let h ∈ H(U) such that h(0) = 1 and

Re

[
1 +

zh′′(z)

h′(z)

]
> −1

2
, z ∈ U.

If f ∈ A satisfies the differential subordination

[Dα+1
λ f(z)]′ +

λαz[Rαf(z)]′′

α+ 1
≺ h(z), z ∈ U (16)

then [Dα
λf(z)]′ ≺ q(z), z ∈ U where q is given by q(z) = 1

z

∫ z

0
h(t)dt.

The function q is convex and is the best dominant.

Proof. A simple application of the differential subordination technique
[2, Corollary 2.6.g.2, p.66] yields that the function g is convex.

By using the properties of operator Dα
λ , in (8), we obtain after a simple

computation that

[Dα+1
λ f(z)]′ +

λαz[Rαf(z)]′′

α+ 1
= p(z) + zp′(z), z ∈ U.
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Then (16) becomes

p(z) + zp′(z) ≺ h(z), z ∈ U. (17)

Since p ∈ H[1, 1], we deduce in view of Lemma A that p(z) ≺ q(z), where
q(z) = 1

z

∫ z

0
h(t)dt, z ∈ U, i.e. [Dα

λf(z)]′ ≺ q(z) = 1
z

∫ z

0
h(t)dt, z ∈ U, and

q is the best dominant.

Example 3. Since Re

(
1 +

zh′′(z)

h′(z)

)
> −1

2
, for h(z) =

z2 + 2z

2(1− z)2
, z ∈

U , and α = 0, λ = 1, we deduce that f ′(z) + zf ′′(z) ≺ z2+2z
2(1−z)2

, z ∈ U,

implies f ′(z) ≺ 1
2

+ 3
2
· 1

z(1−z)
+ ln(z2−2z+1)

z
, z ∈ U.

Theorem 5. Let h ∈ H(U) be such that h(0) = 1 and

Re

(
1 +

zh′′(z)

h′(z)

)
> −1

2
, z ∈ U.

If f ∈ A satisfies the differential subordination

[Dα
λf(z)]′ ≺ h(z), z ∈ U (18)

then
Dα

λf(z)

z
≺ q(z), z ∈ U

where q(z) = 1
z

∫ z

0
h(t)dt. The function q is convex and is the best dominant.

Proof. A simple application of the differential subordination technique
[2, Corollary 2.6.g.2, p.66] yields that the function q is convex.

Let

p(z) =
Dα

λf(z)

z
=

z +
∞∑

j=2

pjz
j

z
= 1 +

∞∑
j=2

pjz
j−1, (19)

z ∈ U , p ∈ H(1, 1).
Differentiating both sides in (19), we obtain that

[Dα
λf(z)]′ = p(z) + zp′(z), z ∈ U. (20)
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Hence (1) becomes p(z) + zp′(z) ≺ h(z), z ∈ U.
Since p ∈ H[1, 1], we deduce in view of Lemma A that

p(z) ≺ q(z) =
1

z

∫ z

0

h(t)dt,

i.e.
Dα

λf(z)

z
≺ q(z) =

1

z

∫ z

0

h(t)dt

and q is the best dominant.

Example 4. Since Re

(
1 +

zh′′(z)

h′(z)

)
> −1

2
, for h(z) = e

3
2
z − 1, and

α = 1, λ = 1, we deduce that f ′(z) + zf ′′(z) ≺ e
3
2
z − 1, z ∈ U. This

subordination yields that f ′(z) ≺ 2
3

e
3
2 z

z
− 1, z ∈ U.

References

[1] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean
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