ON SOME LINEAR D-CONNECTIONS ON THE TOTAL SPACE E OF A VECTOR BUNDLE $\xi=(E, \pi, M)$

Adrian Lupu

Abstract

Using the theory introduced by R. Miron and M. Anastasiei [2] and some results from the theory given by P. Stavre [4], [5], [6], we will obtain in this paper the results from section 2. Based on [4]-[6], we will obtain other results in a future paper.

2000 Mathematics Subject Classification: 53C60. Keywords and phrases: linear d-connections on the total space of a vector bundle, $\stackrel{(12)}{D}$ operators, w conjugations.

1. Introduction

Let us consider $\xi=(E, \pi, M)$ a vector bundle with the base space $M_{n}=$ $\left(M,[A], \mathbb{R}^{n}\right)$ a C^{∞} differentiable, n-dimensional, paracompact manifold, with the m-dimensional fiber type. We obtain the total space E, with the structure $E_{n+m}=\left(E,[\mathcal{A}], \mathbb{R}^{n+m}\right)$ of C^{∞}-differentiable, $(n+m)$-dimensional, paracompact manifold ([2]).

Let us consider an almost sympectic structure w, on E whose restriction to the vertical subspace is nondegenerate. It results that $(n+m)$ must be an even number and that m must also be an even number. Therefore n is an even number. In these conditions, there is a nonlinear connection, $\underset{(w)}{N}$, given by:

$$
\begin{equation*}
w(h Y, v Z)=0, \quad X, Z \in \mathcal{X}(E) \tag{1}
\end{equation*}
$$

It results the decomposition:

$$
\begin{equation*}
w=h w+v w \tag{2}
\end{equation*}
$$

A. Lupu - On some linear d-connections on the total space E of a vector ...
where:

$$
(h w)(X, Z)=w(h X, h Z), \quad(v w)(X, Z)=w(v X, v Z), \quad X, Z \in \mathcal{X}(E)
$$

and h, v - the horizontal and vertical projectors associated to $\underset{(w)}{N}$. In a similar way, if we have N we will have an horizontal distribution $H: u \in E \rightarrow H_{u} E$ such that $T_{u} E=H_{u} E \oplus V_{u} E$. In the followings we will use the notions and the notations from [2].

Since E_{n+m} is C^{∞}-differentiable and paracompact it results that there are linear connections, $\{D\}$, on E. The linear connections D, on E, which have the remarkable geometric property that regarding parallel transport, preserve the horizontal distribution H and the vertical one, V, have an important role. This property is important for analytical mechanics and theoretical physics. Such connections D, are called linear d-connections (or remarkable connections). It results:

Proposition 1. [2] A linear connection D, on E, for which is fixed a nonlinear connection N, of h and v projectors is a linear d-connection iff:

$$
\begin{equation*}
h D_{X} v Y=0, \quad v D_{X} h Y=0 \tag{3}
\end{equation*}
$$

In the followings we will consider $N=\underset{(w)}{N}$, without notice that. Into a local base, adapted to $N:\left\{\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial y^{a}}\right\}(i=\overline{1, n}, a=\overline{1, m})$ we can write:

$$
\begin{align*}
D_{\frac{\delta}{\delta x^{k}}}^{h} \frac{\delta}{\delta x^{j}} & =\Gamma_{j k}^{i}(x, y) \frac{\delta}{\delta x^{i}}, \quad D_{\frac{\delta}{\delta x^{k}}}^{h} \frac{\partial}{\partial y^{a}}=\Gamma_{n+a k}^{n+b}(x, y) \frac{\partial}{\partial y^{b}} \tag{4}\\
D_{\frac{\partial}{\partial y^{b}}}^{v} \frac{\delta}{\delta x^{j}} & =\Gamma_{j n+b}^{i} \frac{\delta}{\delta x^{i}}, \quad D_{\frac{\partial}{\partial y^{b}}}^{u} \frac{\partial}{\partial y^{a}}=\Gamma_{n+a n+b}^{n+c}(x, y) \frac{\partial}{\partial y^{c}}, \tag{5}
\end{align*}
$$

where $\left(\Gamma_{j k}^{i}, \Gamma_{n+a k}^{n+b}\right)=D^{h}$ are the local coefficients of the h-covariant derivative and $\left(\Gamma_{j n+b}^{i}, \Gamma_{n+a n+b}^{n+c}\right)=D^{v}$ are the local coefficients of the v-covariant derivative $(i, j, k=\overline{1, n}, a, b, c=\overline{1, m})$.

Now we can write the d-tensor field of torsion, which characterize the torsion T of a linear d-connection and the d-tensor field of curvature, which characterize the curvature tensor of one linear d-connection [2].
A. Lupu - On some linear d-connections on the total space E of a vector ...

$$
\text { 1. SPECIAL OPERATORS } \stackrel{(12)}{D} w, \stackrel{(21)}{D} w
$$

Let us consider $\stackrel{(1)}{D}$, a d-linear connection on E, given in the adapter base to $N=\underset{(w)}{N}$, by the local coefficients:

$$
\stackrel{(1)}{D}^{h}=\left(\stackrel{(1)}{\Gamma}_{j k}^{i}, \stackrel{(1)}{\Gamma}_{n+a k}^{n+c}\right), \quad \stackrel{(1)}{D^{v}}=\left(\stackrel{(1)}{\Gamma}_{j}^{i}{ }_{n+b}, \stackrel{(1)}{\Gamma_{n+a}^{n+c}}{ }_{n+b}\right)
$$

(2)
D, a linear d-connection, given by the local coefficients:

$$
\stackrel{(2)}{D}^{h}=\left(\stackrel{(2)}{\Gamma}_{j k}^{i}, \stackrel{(2)}{\Gamma_{n+a k}^{n+c}}\right), \quad \stackrel{(2)}{D^{v}}=\left(\stackrel{(2)}{\Gamma}_{j}^{i} n+b, \stackrel{(2)}{\Gamma}_{n+c n+b}^{n+a}\right)
$$

given by:

$$
\begin{gather*}
\stackrel{(2)}{\Gamma_{j k}^{i}}=\stackrel{(1)}{\Gamma}{ }_{j k}^{i}+w^{i r} \stackrel{(1)}{D}_{k}^{h} w_{r j}, \quad \stackrel{(2)}{\Gamma_{n+a}^{n+c}}=\stackrel{(1)}{\Gamma_{n+a}^{n+c}}+w^{n+c} n+b \tag{1}\\
\stackrel{(1)}{D}_{k}^{h} w_{n+b} n+a \tag{2}\\
\stackrel{(2)}{\Gamma_{j}^{i}}{ }_{j n+b}=\stackrel{(1)}{\Gamma_{j}^{i}}{ }_{j n+b}+w^{i r}{ }^{(1)}{ }_{n+b}^{v} w_{r j}, \\
\stackrel{(2)}{\Gamma}_{n+a}^{n+c}{ }_{n+b}=\stackrel{(1)}{\Gamma_{n+a}^{n+c}}{ }_{n+b}+w^{n+c n+d}{ }^{(1)}{ }_{n+b}^{v} w_{n+d n+a}
\end{gather*}
$$

where:

$$
\begin{gather*}
w_{i r}=w\left(\frac{\delta}{\delta x^{r}}, \frac{\delta}{\delta x^{i}}\right), \quad w_{n+a n+b}=w\left(\frac{\partial}{\partial y^{b}}, \frac{\partial}{\partial y^{a}}\right) \tag{3}\\
w_{r n+b}=w\left(\frac{\delta}{\delta x^{r}}, \frac{\partial}{\partial y^{b}}\right)=0, \quad w^{\alpha \beta} w_{\beta \gamma}=\delta_{\gamma}^{\alpha} . \tag{4}
\end{gather*}
$$

We have:

$$
\begin{equation*}
w=\frac{1}{2} w_{i k} d x^{i} \wedge d x^{k}+\frac{1}{2} w_{n+a} n+b \delta y^{a} \wedge \delta y^{b} \tag{5}
\end{equation*}
$$

where $\left(d x^{i}, \delta y^{a}\right)$ is a local base, dual to the local adapted base $\left(\frac{\delta}{\delta x^{r}}, \frac{\partial}{\partial y^{b}}\right)$.
Let us consider:

$$
\begin{equation*}
\stackrel{(21)}{\tau}_{j}{ }_{j k} \stackrel{\text { def }}{=} \stackrel{(2)}{\Gamma}{ }_{j k}^{i}-\stackrel{(1)}{\Gamma}{ }_{j k}^{i}, \quad{\stackrel{(21)}{\tau})_{n+c}}_{n+a k} \stackrel{\text { def }}{=} \stackrel{(2)}{\Gamma}{ }_{n+a k}^{n+c}-\stackrel{(1)}{\Gamma}_{n+a k}^{n+c} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{(21)}{\tau}_{j}{ }_{j n+b} \stackrel{\text { def }}{=} \stackrel{(2)}{\Gamma}{ }_{j}^{i} n_{n+b}-\stackrel{(1)}{\Gamma}_{j}^{i} n+b, \quad \stackrel{(21)}{\tau}_{n+c} n+a n+b \stackrel{\operatorname{def}}{=} \stackrel{(2)}{\Gamma}_{n+a}^{n+c}{ }_{n+b}-\stackrel{(1)}{\Gamma}_{n+a n+b}^{n+c} \tag{7}
\end{equation*}
$$

From (1), (2), (6), (7) it results:

$$
\begin{gather*}
0=\stackrel{(1)}{D_{k}^{h}} w_{j l}-\stackrel{(21)}{\tau}{ }_{j k} w_{r l} \tag{8}\\
0=\stackrel{(1)}{D_{k}^{h}} w_{n+a n+b}-{\stackrel{(21)}{\tau}{ }_{n+c}{ }_{n+a}} w_{n+c} n+b \tag{9}\\
0=\stackrel{(1)}{D_{n+c}^{v}} w_{j l}-\stackrel{\left(2_{\tau}^{\tau}\right)_{r}}{j n+c} w_{r l} \tag{10}\\
0=\stackrel{(1)}{D_{n+c}^{v}} w_{n+a n+b}-{\stackrel{(21)}{\tau})_{n+d}}_{n+a n+c} w_{n+d n+b} . \tag{11}
\end{gather*}
$$

It results:
Proposition 1. Let us consider an almost symplectic structure w on E, and $\stackrel{(1)}{D}$ a linear d-connection with its local coefficients $\stackrel{(1)}{D}{ }^{h}, \stackrel{(1)}{D^{v}}$. Then (1), (2) are equivalent with (8)-(11).

Let's give an interpretation for (8)-(11). In [6] P. Stavre has introduced (21) (12) the operators: $D w, D w$ by:

$$
\begin{align*}
& \left.\left(\stackrel{(12)}{D}_{X} w\right)(Y, Z)=\left(\stackrel{(1)}{D}_{X} w\right)(Y, Z)-w\left(Y, \stackrel{(21)}{\tau}^{(} X, Z\right)\right) \tag{12}\\
& \left(\stackrel{(21)}{D}_{X} w\right)(Y, Z)=\left(\stackrel{(2)}{D}_{X} w\right)(Y, Z)-w(Y, \stackrel{(12)}{\tau}(X, Z)) \tag{13}
\end{align*}
$$

and has studied their general properties, where:

$$
\begin{equation*}
\stackrel{(21)}{\tau}_{\tau}(X, Z)=\stackrel{(2)}{D}_{X} Z-\stackrel{(1)}{D}_{X} Z, \quad{\stackrel{(12)}{\tau}(X, Z)=\stackrel{(1)}{D}_{X} Z-\stackrel{(2)}{D}_{X} Z} \tag{14}
\end{equation*}
$$

In the general case we have:

$$
\begin{align*}
\left(\stackrel{(12)}{D}_{X} w\right)(Y, Z) & \neq\left(\stackrel{(12)}{D}_{X} w\right)(Z, Y), \tag{15}\\
\left(\stackrel{(12)}{D}_{X} w\right)(Y, Z) & \neq-\left(\stackrel{(12)}{D}_{X} w\right)(Z, Y) \\
\stackrel{(12)}{D}_{X} w & \neq \stackrel{(21)}{D}_{X} w . \tag{16}
\end{align*}
$$

The notion of almost simplectic conjugation of two linear connections $\stackrel{(1)}{D}$, (2) D is also introduced in [6]. It has been proved that this is equivalent with the relation:

$$
\begin{equation*}
\left(\stackrel{(12)}{D}_{X} w\right)(Y, Z)=-2 \beta(X) w(Y, Z) \tag{17}
\end{equation*}
$$

where β is a certain 1-form. An ample theory is obtained starting from here. In this case we write $\stackrel{(2)}{D} \stackrel{\omega}{\sim} \stackrel{(1)}{D}$.

Taking into account [5] we shall use the w-conjugation theory for two linear d-connections $\stackrel{(1)}{D}, \stackrel{(2)}{D}$ on the total space E, equipped with an almost simplectiv structure w.

Definition 1. If $\stackrel{(12)}{D}_{x} w=0$ then we will say that $\stackrel{(1)}{D}$ and $\stackrel{(2)}{D}$ are (w) absolute conjugated. We shall write: $\stackrel{(2)}{D} \underset{\text { abs }}{w} \stackrel{(1)}{D}$.

Proposition 2. Let us consider $\stackrel{(1)}{D} \stackrel{(2)}{D}$ two linear d-connection on E, with respect to $N=\underset{(w)}{N}$. Then the relation $\stackrel{(2)}{D} \underset{a b s}{\underset{\sim}{w}} \stackrel{(1)}{D}$ is characterized by:

$$
\begin{align*}
& \stackrel{(12)}{D_{X}^{h}} h w=0, \quad \stackrel{(12)}{D_{X}^{h}} v w=0 \tag{18}\\
& \stackrel{(12)}{D_{X}^{v}} h w=0, \quad \stackrel{(12)}{D_{X}^{v}} v w=0 . \tag{19}
\end{align*}
$$

Proof. From (1), (2) section 1 and from the definition of $\stackrel{(12)}{D} w$, since $\stackrel{(1)}{D}, \stackrel{(2)}{D}$ are linear d-connections, it results that $\stackrel{(12)}{D} w=0$ is characterized only by (18), (19).

From Proposition 2 and from (1), (2) section 2 it results:
Proposition 3. A d-linear connection $\stackrel{(2)}{D}$ such that $\stackrel{(2)}{D} \underset{a b s}{\underset{\sim}{w}} \stackrel{(1)}{D}$ is well-defined by (1), (2) and conversely.

A characterization of a d-linear connection $\stackrel{(2)}{D}$, defined by (1), (2), is given in that way:
A. Lupu - On some linear d-connections on the total space E of a vector ...

Proposition 4. The relation $\stackrel{(2)}{D} \underset{a b s}{w} \stackrel{(1)}{D}$ is symmetric i.e.:

$$
\begin{equation*}
\stackrel{(2)}{D} \underset{a b s}{\sim} \stackrel{(1)}{D} \Leftrightarrow \stackrel{(1)}{D} \underset{a b s}{\underset{\sim}{w}} \stackrel{(2)}{D} \tag{20}
\end{equation*}
$$

Proof. If we have $\stackrel{(2)}{D} \underset{\text { abs }}{w} \stackrel{(1)}{D}$ then we will have (1), (2) and conversely. By direct calculus, it results:

$$
\begin{align*}
& \stackrel{(2)}{D}_{k}^{h} w_{i j}=\stackrel{(12)}{\tau}_{r i k} w_{r j} \tag{21}\\
& \stackrel{(2)}{D}_{k}^{h} w_{n+a n+b}={\stackrel{(12)}{\tau}{ }_{n+c}}_{n+a} w_{n+c} n+b \tag{22}\\
& \stackrel{(2)}{D}_{n+b}^{v} w_{i j}=\stackrel{(12)}{\tau}_{r}^{r}{ }_{i+b} w_{r j} \tag{23}\\
& \stackrel{(2)}{D}_{n+c}^{v} w_{n+a n+b}=\stackrel{(12)}{\tau}_{n+d}^{n+a} n+c \tag{24}\\
& w_{n+d} n+b
\end{align*}
$$

and therefore $\stackrel{(12)}{D} w=0$. Hence $\stackrel{(1)}{D} \underset{a b s}{w} \stackrel{(2)}{D}$.
Like a corollary, it results:
Proposition 5. If we have (1), (2) then we will have:

$$
\begin{align*}
& \stackrel{(1)}{\Gamma_{j}^{i}}{ }_{j k}=\stackrel{(2)}{\Gamma^{i}}{ }_{j k}+w^{i r} \stackrel{(2)}{D}{ }_{k}^{h} w_{r j} \tag{25}\\
& \stackrel{(1)}{\Gamma_{n+a k}^{n+c}}=\stackrel{(2)}{\Gamma_{n+a k}^{n+c}}+w^{n+c n+d} \stackrel{(2)}{D}_{k}^{h} w_{n+d n+a} \tag{26}\\
& \stackrel{(1)}{\Gamma}_{j}^{i}{ }_{n+b}=\stackrel{(2)}{\Gamma^{i}}{ }_{j}{ }_{n+b}+w^{i r} \stackrel{(2)}{D_{n+b}^{v}} w_{r j} \tag{27}\\
& \stackrel{(1)}{\Gamma}_{n+a}^{n+c}{ }_{n+b}=\stackrel{(2)}{\Gamma}_{n+a}^{n+c}{ }_{n+b}+w^{n+c} n+d{ }^{(2)}{ }_{n+b}^{v} w_{n+d n+a} . \tag{28}
\end{align*}
$$

Proposition 6. Let us consider $\stackrel{(1)}{D}, \stackrel{(2)}{D}, \stackrel{(1)}{D} \neq \stackrel{(2)}{D}$ two linear d-connections on E, with respect to $N=\underset{(w)}{N}$. If $\stackrel{(2)}{D} \underset{a b s}{w} \stackrel{(1)}{D}$ then $\stackrel{(1)}{D}, \stackrel{(2)}{D}$ won't be w-compatible.

Proof. A linear d-connection D, on E, is w-compatible $(D w=0)$ iff $([2])$:

$$
\begin{equation*}
D_{X}^{h} h w=0, \quad D_{X}^{h} v w=0 \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
D_{X}^{v} h w=0, \quad D_{X}^{v} v w=0 \tag{30}
\end{equation*}
$$

Let us consider $\stackrel{(1)}{D} \stackrel{(2)}{D}$ two linear d-connections. If $\stackrel{(1)}{D}$ is w-compatible and $\stackrel{(2)}{D} \underset{\text { abs }}{\sim} \stackrel{(1)}{D}$ then we will have (1), (2) with $\stackrel{(1)}{D} w=0$. It results $\stackrel{(2)}{D}=\stackrel{(1)}{D}$ which is a contradiction.

In the same way, if $\stackrel{(2)}{D}$ had been w-compatible and $\stackrel{(2)}{D} \underset{a b s}{w} \stackrel{(1)}{D}$, taking into account of (25)-(28) it would have resulted $\stackrel{(2)}{D}=\stackrel{(1)}{D}$ which is a contradiction.

Therefore, it will not exist a d-linear connection $\stackrel{(2)}{D}$ on E so that $\stackrel{(2)}{D} \underset{a b s}{\underset{\sim}{w}} \stackrel{(1)}{D}$ (1)
if D is a linear, w-compatible connection on E.
Let us consider a linear connection D on E, with the torsion:

$$
T(X, Y)=D_{X} Y-D_{Y} X-[X, Y], \quad X, Y \in \mathcal{X}(E)
$$

We will denote the coefficients of T in a local base $\{\underset{(\alpha)}{X}\}(\alpha=\overline{1, n+m})$ by:

$$
\begin{equation*}
T \underset{(\beta)(\alpha)}{X X})=T_{\alpha \beta}^{\sigma} \underset{(\sigma)}{X}, \quad T_{\alpha \beta}^{\sigma}=-T_{\beta \alpha}^{\sigma} . \tag{31}
\end{equation*}
$$

With these notations, if D is a linear d-connection on E and we choose the adapted local base $\left\{\underset{(r)}{X}=\frac{\delta}{\delta x^{r}} ; \underset{(n+a)}{X}=\frac{\partial}{\partial y^{\alpha}}\right\}$ then T will be characterized by the d-tensorial fields of the local components:

$$
\begin{gather*}
T_{j k}^{i}=\Gamma_{j k}^{i}-\Gamma_{k j}^{i}, \quad T_{j k}^{n+a}=R_{j k}^{n+a} \tag{32}\\
T_{j n+b}^{i}=\Gamma_{j n+b}^{i}, \quad T_{j n+b}^{n+a}=\frac{\partial N_{j}^{a}}{\partial y^{b}}-\Gamma_{n+b j}^{n+a} \tag{33}\\
T_{n+a n+b}^{i}=0, \quad T_{n+a n+b}^{n+c}=\Gamma_{n+a n+b}^{n+c}-\Gamma_{n+b n+a}^{n+c} \tag{34}
\end{gather*}
$$

where ([2]):

$$
\begin{equation*}
R_{j k}^{n+a}=\frac{\delta N_{k}^{a}}{\delta x^{j}}-\frac{\delta N_{j}^{a}}{\delta x^{k}} \tag{35}
\end{equation*}
$$

A problem which appears is to establish on what conditions two linear d connections, w-absolute conjugated, $\stackrel{(1)}{D}$ and $\stackrel{(2)}{D}$ have the same torsion: $\stackrel{(2)}{T}=\stackrel{(1)}{T}$.
(1) (2)

Proposition 7. Let us consider D, D two linear d-connections on E such that $\stackrel{(2)}{D} \underset{a b s}{w} \stackrel{(1)}{D}$. Then $\stackrel{(1)}{T}=\stackrel{(2)}{T}$ iff:

$$
\begin{equation*}
\stackrel{(1)}{D_{k}^{h}} w_{l j}-\stackrel{(1)}{D_{j}^{h}} w_{l k}=0 \tag{36}
\end{equation*}
$$

$\stackrel{(1)}{D}_{k}^{h} w_{n+d n+a}=0$
${ }^{(1)}$

$$
\begin{equation*}
D_{n+b}^{v} w_{l j}=0 \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{(1)}{D_{n+b}^{v}} w_{n+d n+a}-\stackrel{(1)}{D_{n+a}^{v}} w_{n+d n+b}=0 . \tag{38}
\end{equation*}
$$

Proof. Because $\stackrel{(1)}{D}, \stackrel{(2)}{D}$ are linear d-connections on E, their torsions $\stackrel{(1)}{T}, \stackrel{(2)}{T}$ in the local, adapted base have the components (32)-(35).

We already have:

$$
\begin{align*}
& \stackrel{(1)}{T}_{j k}^{n+a}=\stackrel{(2)}{T}{ }_{j k}^{n+a}=R_{j k}^{n+a} \tag{40}\\
& \stackrel{(1)}{T}_{n+a n+b}^{i}=\stackrel{(2)}{T}_{n+a}^{i}{ }_{n+b}=0 \tag{41}
\end{align*}
$$

From the condition $\stackrel{(1)}{T}_{j}^{i}{ }_{j k}=\stackrel{(2)}{T}{ }_{j k}^{i}$ and from (1) we obtain the equivalent relation:

$$
\begin{equation*}
\stackrel{(1)}{D_{k}^{h}} w_{l j}-\stackrel{(1)}{D_{j}^{h}} w_{l k}=0 \tag{42}
\end{equation*}
$$

From (1) it will also result the equivalent relation:

$$
\begin{equation*}
\stackrel{(1)}{D}_{k}^{h} w_{n+d n+a}=0 \tag{43}
\end{equation*}
$$

if we have the condition:

$$
\stackrel{(1)}{T}{ }_{j}^{n+a}{ }_{n+b}=\stackrel{(2)}{T}{ }_{j}^{n+a} \underset{n+b}{ } .
$$

From (2) we will obtain the equivalent relation:

$$
\begin{equation*}
\stackrel{(1)}{D}_{n+b}^{v} w_{l j}=0 \tag{44}
\end{equation*}
$$

if we have $\stackrel{(1)}{T}_{j}^{i}{ }_{n+b}=\stackrel{(2)}{T}{ }_{j}^{i}{ }_{n+b}$.
A. Lupu - On some linear d-connections on the total space E of a vector ...

Furthermore from (2) we obtain the equivalent relation

$$
\begin{equation*}
\stackrel{(1)}{D_{n+b}^{v}} w_{n+d n+a}-\stackrel{(1)}{D_{n+a}^{v}} w_{n+d n+b}=0 \tag{45}
\end{equation*}
$$

if we have the condition:

$$
\stackrel{(1)}{T}_{n+a n+b}^{n+c}=\stackrel{(2)}{T}_{n+a n+b}^{n+c} .
$$

We obtain thus (36)-(39) and conversely.
Like a corollary we get, equivalent:
Proposition 8. Let us consider $\stackrel{(1)}{D}, \stackrel{(2)}{D}$ two linear d-connections on E, so that $\stackrel{(2)}{D} \underset{a b s}{w} \stackrel{(1)}{D}$. Then $\stackrel{(1)}{T}=\stackrel{(2)}{T} i f f$:

$$
\begin{gather*}
\stackrel{(2)}{D_{k}^{h}} w_{i j}-\stackrel{(2)}{D_{j}^{h}} w_{i k}=0 \tag{46}\\
\stackrel{(2)}{D} h w_{n+a} n+b=0 \tag{47}\\
\stackrel{(2)}{D_{n+b}^{v}} w_{i j}=0 \\
\stackrel{(2)}{D_{n+b}^{v} w_{n+c}{ }_{n+a}-\stackrel{(2)}{D}}{ }_{n+a}^{v} w_{n+d n+b}=0 . \tag{48}
\end{gather*}
$$

Definition 2. A linear d-connection on E will be called w-semicompatible if we have:

$$
\begin{gather*}
D_{k}^{h} w_{n+a n+b}=0, \quad D_{X}^{h} v w=0 \tag{50}\\
D_{n+b}^{v} w_{i j}=0, \quad D_{X}^{v} h w=0 \tag{51}
\end{gather*}
$$

Definition 3. A linear d-connection D, on E, will be called w-semi Codazzi connection if we have:

$$
\begin{align*}
D_{k}^{h} w_{i j} & =D_{j}^{h} w_{i k} \tag{52}\\
D_{n+b}^{v} w_{n+c n+a} & =D_{n+a}^{v} w_{n+c n+b} \tag{53}
\end{align*}
$$

We have:
(1) (2)

Proposition 9. Let us consider $\stackrel{D}{D}$ two linear d-connections on E such that $\stackrel{(2)}{D} \underset{\text { abs }}{\underset{\sim}{D}} \stackrel{(1)}{D}$. Then $\stackrel{(1)}{T}=\stackrel{(2)}{T}$ iff $\stackrel{(1)}{D}$ is w-semicompatible and it is w-semi Codazzi.

Proposition 10. Let us consider $D, \stackrel{D}{D}$ two linear d-connections on E such that $\stackrel{(2)}{D} \underset{\text { abs }}{\underset{\sim}{D}} \stackrel{(1)}{D}$. Then $\stackrel{(1)}{T}=\stackrel{(2)}{T}$ iff $\stackrel{(2)}{D}$ is w-semi compatible and w-semi Codazzi.

If the distribution H is integrable then we will have:

$$
R_{j k}^{n+a}=0
$$

More general results and the relation between the curvature tensors $\stackrel{(1)}{R}, \stackrel{(2)}{R}$ will be given in a future paper.

I would like to thank Professor P. Stavre for his support during the preparation of this paper.

References

[1] A. Lupu, The w-conjugation in the vector bundle, RIGA Conference, Braşov, June 2007.
[2] R. Miron, M. Anastasiei, Fibrate vectoriale. Spaţii Lagrange. Aplicaţii in teoria relativităţii, Ed. Academiei, 1987.
[3] A. Nastaselu, A. Lupu, On some structures F, F^{*}, National Seminar of Finsler Lagrange Spaces, Braşov, 2004.
[4] P. Stavre, Fibrate vectoriale, vol. I, II, III, Ed. Universitaria, Craiova, 2004-2006.
[5] P. Stavre, Aprofundări în geometria diferentială. Aplicaţii la spaţii Norden şi la teoria relativităţii, vol. III, Ed. Universitaria, Craiova, 2006.
[6] P. Stavre, Introducere în teoria structurilor geometrice conjugate, Ed. Matrix, Bucureşti, 2007.
[7] P. Stavre, On Some Remarkable Results of R. Miron, Libertas Math., tom XXIV, Arlington, Texas, 2004, p. 51-58.

Author:

Adrian Lupu
Technical High School "Decebal", Drobeta Turnu Severin, Romania email: adilupudts@yahoo.ca

