ABOUT SOME CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS

Mugur Acu, Irina Dorca and Daniel Breaz

ABSTRACT. Our subject of study in this paper is represented by a class of convex functions with negative coefficients defined by using a modified Sălăgean operator.

2000 Mathematics Subject Classification: 30C45.

Keywords and phrases: differential opperators, convex, starlike, regular, subordination.

1. Introduction

Let $\mathcal{H}(U)$ to be the set of functions which are regular in the unit disc U,

$$A = \{ f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0 \}$$

and $S = \{ f \in A : f \text{ is univalent in } U \}.$

In [7] the subfamily T of S consisting of functions f of the form

$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j, \ a_j \ge 0, j = 2, 3, ..., \ z \in U$$
 (1)

was introduced.

The purpose of this paper is to define a class of convex functions with negative coefficients and to give some properties of its by using a modified Sălăgean operator.

2. Preliminary results

Let D^n be the Sălăgean differential operator (see [6]) $D^n:A\to A,\,n\in\mathbb{N},$ defined as:

$$D^{0}f(z) = f(z)$$

$$D^{1}f(z) = Df(z) = zf'(z)$$

$$D^{n}f(z) = D(D^{n-1}f(z))$$

Remark 2.1. If $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$ then $D^n f(z) = z - \sum_{j=2}^{\infty} j^n a_j z^j$.

DEFINITION 2.1. [1] Let $\beta, \lambda \in \mathbb{R}, \beta \geq 0, \lambda \geq 0$ and $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$.

We denote by D_{λ}^{β} the linear operator defined by

$$D_{\lambda}^{\beta}: A \to A$$
,

$$D_{\lambda}^{\beta} f(z) = z + \sum_{i=2}^{\infty} (1 + (j-1)\lambda)^{\beta} a_j z^j.$$

THEOREM 2.1. [6] If $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$ then the next assertions are equivalent:

- (i) $\sum_{j=2}^{\infty} j a_j \le 1$
- (ii) $f \in T$
- (iii) $f \in T^*$, where $T^* = T \cap S^*$ and S^* is the well-known class of starlike functions.

For $\alpha \in [0,1)$ and $n \in \mathbb{N}$, we denote

$$S_n^c(\alpha) = \left\{ f \in A : Re \frac{D^{n+2} f(z)}{D^{n+1} f(z)} > \alpha, z \in U \right\}$$

the set of n-convex functions of order α .

DEFINITION 2.2 [5] Let $I_c: A \to A$ be the integral operator defined by $f = I_c(F)$, where $c \in (-1, \infty)$, $F \in A$ and

$$f(z) = \frac{c+1}{z^c} \int_{0}^{z} t^{c-1} F(t) dt.$$
 (2)

We note if $F \in A$ is a function of the form (1), then

$$f(z) = I_c F(z) = z - \sum_{j=2}^{\infty} \frac{c+1}{c+j} a_j z^j.$$
 (3)

We denote by f * g the modified Hadamard product of two functions $f(z), g(z) \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $(a_j \ge 0, j = 2, 3, ...)$ and $g(z) = z - \sum_{j=2}^{\infty} b_j z^j$, $(b_j \ge 0, j=2,3,...)$, is defined by

$$(f * g)(z) = z - \sum_{j=2}^{\infty} a_j b_j z^j.$$

An analytic function f is set to be subordinate to an analytic function g if f(z) = g(w(z)), $z \in U$, for some analytic function w with w(0) = 0 and $|w(z)| < 1(z \in U)$. We denote this subordination by $f \prec g$.

Theorem 2.2. [4] If f and g are analytic in U with $f \prec g$, then for $\mu > 0$ and $z = re^{i\theta}$ (0 < r < 1), we have

$$\int_{0}^{2\pi} |f(z)|^{\mu} d\theta \le \int_{0}^{2\pi} |g(z)|^{\mu} d\theta.$$

Definition 2.3. [2] We consider the integral operator $I_{c+\delta}: A \to A$, $0 < u \le 1, 1 \le \delta < \infty, 0 < c < \infty,$ defined by

$$f(z) = I_{c+\delta}(F(z)) = (c+\delta) \int_{0}^{1} u^{c+\delta-2} F(uz) du.$$
 (4)

Remark 2.2. For $F(z) = z + \sum_{j=2}^{\infty} a_j z^j$. From (4) we obtain

$$f(z) = z + \sum_{j=2}^{\infty} \frac{c+\delta}{c+j+\delta-1} a_j z^j.$$

Also, we notice that $0<\frac{c+\delta}{c+j+\delta-1}<1,$ where $0< c<\infty,\ j\geq 2,$ $1\leq \delta<\infty.$

REMARK 2.3. It is easy to prove that for $F(z) \in T$ and $f(z) = I_{c+\delta}(F(z))$, we have $f(z) \in T$, where $I_{c+\delta}$ is the integral operator defined by (4).

3. Main results

Definition 3.1. Let $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, j = 2, 3, ..., $z \in U$. We say that f is in the class $T^c L_{\beta}(\alpha)$ if:

$$Re \frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)} > \alpha, \quad \alpha \in [0,1), \quad \lambda \ge 0, \quad \beta \ge 0, \quad z \in U.$$

THEOREM 3.1. Let $\alpha \in [0,1)$, $\lambda \geq 0$ and $\beta \geq 0$. The function $f \in T$ of the form (1) is in the class $T^cL_{\beta}(\alpha)$ iff

$$\sum_{j=2}^{\infty} [(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]a_j < 1-\alpha.$$
 (5)

Proof. Let $f \in T^cL_{\beta}(\alpha)$, with $\alpha \in [0,1)$, $\lambda \geq 0$ and $\beta \geq 0$. We have

$$Re \frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)} > \alpha$$
.

If we take $z \in [0, 1)$, $\beta \ge 0$, $\lambda \ge 0$, we have (see Definition 2.1):

$$\frac{1 - \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+2} a_j z^{j-1}}{1 - \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1} a_j z^{j-1}} > \alpha.$$
(6)

From (6) we obtain:

$$\sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1} (1 + (j-1)\lambda - \alpha) a_j z^{j-1} < 1 - \alpha.$$

Letting $z \to 1^-$ along the real axis we have:

$$\sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1} (1 + (j-1)\lambda - \alpha) a_j < 1 - \alpha.$$

Conversely, let take $f \in T$ for which the relation (5) hold.

The condition $Re \frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} > \alpha$ is equivalent with

$$\alpha - Re\left(\frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} - 1\right) < 1.$$
 (7)

We have

$$\alpha - Re\left(\frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} - 1\right) \le \alpha + \left|\frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} - 1\right|$$

$$= \alpha + \left|\frac{\sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1} a_j [(j-1)\lambda] z^{j-1}}{1 - \sum_{j=1}^{\infty} [1 + (j-1)\lambda]^{\beta+1} a_j z^{j-1}}\right|$$

$$\leq \alpha + \frac{\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} a_j |1 - j|\lambda|z|^{j-1}}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} a_j |z|^{j-1}}$$

$$= \alpha + \frac{\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} a_j (j-1)\lambda|z|^{j-1}}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} a_j |z|^{j-1}}$$

$$< \alpha + \frac{\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} a_j (j-1)\lambda}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} a_j} < 1.$$

Thus

$$\alpha + \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} a_j [(j-1)\lambda + 1 - \alpha] < 1,$$

which is the condition (5).

REMARK 3.1. Using the condition (5) it is easy to prove that $T^cL_{\beta+1}(\alpha) \subseteq T^cL_{\beta}(\alpha)$, where $\beta \geq 0$, $\alpha \in [0,1)$ and $\lambda \geq 0$.

Theorem 3.2. If
$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j \in T^c L_{\beta}(\alpha), (a_j \ge 0, j = 2, 3, ...),$$

 $g(z) = z - \sum_{j=2}^{\infty} b_j z^j \in T^c L_{\beta}(\alpha), (b_j \ge 0, j = 2, 3, ...), \alpha \in [0, 1), \lambda \ge 0, \beta \ge 0,$
then $f(z) * g(z) \in T^c L_{\beta}(\alpha).$

Proof. We have

$$\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} [(j-1)\lambda + 1 - \alpha] a_j < 1 - \alpha$$

and

$$\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} [(j-1)\lambda + 1 - \alpha] b_j < 1 - \alpha.$$

We know from the definition of the modified convolution product that $f(z)*g(z)=z-\sum_{j=2}^{\infty}a_jb_jz^j$. From $g(z)\in T$, by using Theorem 2.1, we have $\sum_{j=2}^{\infty}jb_j\leq 1$. We notice that $b_j<1,\quad j=2,3,\ldots$

$$\sum_{j=2}^{\infty} [1+(j-1)\lambda]^{\beta+1} [(j-1)\lambda+1-\alpha] a_j b_j < \sum_{j=2}^{\infty} [1+(j-1)\lambda]^{\beta+1} [(j-1)\lambda+1-\alpha] a_j < \sum_{j=2}^{\infty} [1+(j-1)\lambda+1-\alpha] a_j < \sum_$$

This means that $f(z) * g(z) \in T^c L_{\beta}(\alpha), \quad \beta \geq 0, \quad \alpha \in [0, 1) \text{ and } \lambda \geq 0.$

Theorem 3.3. If $F(z) = z - \sum_{j=2}^{\infty} a_j z^j \in T^c L_{\beta}(\alpha)$, then $f(z) = I_c F(z) \in T^c L_{\beta}(\alpha)$, where I_c is the integral operator defined by (2).

Proof. We have $f(z) = z - \sum_{j=2}^{\infty} b_j z^j$, where $b_j = \frac{c+1}{c+j} a_j$, $c \in (-1, \infty)$, $j=2,3,\ldots$

Thus $b_j < a_j$, j=2,3 ... and using the condition (5) for F(z) we obtain

$$\sum_{j=2}^{\infty} [1+(j-1)\lambda]^{\beta+1} [(j-1)\lambda+1-\alpha]b_j < \sum_{j=2}^{\infty} [1+(j-1)\lambda]^{\beta+1} [(j-1)\lambda+1-\alpha]a_j < 1-\alpha.$$

This completes our proof.

THEOREM 3.4. Let F(z) be in the class $T^cL_{\beta}(\alpha)$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \geq 0$, $j \geq 2$. Then $f(z) = I_{c+\delta}(F(z)) \in T^cL_{\beta}(\alpha)$, where $I_{c+\delta}$ is the integral operator defined by (4).

Proof. From $F(z) \in T^c L_{\beta}(\alpha)$ we have (see Theorem 3.1)

$$\sum_{j=2}^{\infty} [(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]a_j < 1-\alpha$$

where $\lambda \geq 0$, $\beta \geq 0$, $0 < c < \infty$ and $1 \leq \delta < \infty$. Let $f(z) = z - \sum_{j=2}^{\infty} b_j z^j$, where (see Remark 3.2)

$$b_j = \frac{c+\delta}{c+\delta+j-1} a_j \ge 0 \text{ and } 0 < \frac{c+\delta}{c+\delta+j-1} < 1.$$

From Remark 3.3 we obtain $f(z) \in T$. We have

$$[(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]b_j < [(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]a_j.$$
 Thus,

$$\sum_{j=2}^{\infty} [(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]b_j \le \sum_{j=2}^{\infty} [(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]a_j < 1-\alpha.$$

This completes our proof.

THEOREM 3.5. Let $f_1(z) = z$ and

$$f_j(z) = z - \frac{1 - \alpha}{(1 + (j-1)\lambda)^{\beta+1}(1 - \alpha + (j-1)\lambda)} z^j, \ j = 2, 3, \dots$$

Then $f \in T^c L_{\beta}(\alpha)$ iff it can be expressed in the form $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z)$, where $\lambda_j \geq 0$ and $\sum_{j=1}^{\infty} \lambda_j = 1$.

Proof. Let $f(z)=\sum_{j=1}^\infty\lambda_jf_j(z),\ \lambda_j\geq0,\ j=1,2,\ \dots$, with $\sum_{j=1}^\infty\lambda_j=1.$ We obtain

$$f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z) = \sum_{j=1}^{\infty} \lambda_j \left(z - \frac{1 - \alpha}{[1 + (j-1)\lambda]^{\beta+1} [1 - \alpha + (j-1)\lambda]} z^j \right)$$
$$= z - \sum_{j=2}^{\infty} \lambda_j \frac{1 - \alpha}{[1 + (j-1)\lambda]^{\beta+1} [1 - \alpha + (j-1)\lambda]} z^j.$$

We have

$$\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} [1 - \alpha + (j-1)\lambda] \lambda_j \frac{1 - \alpha}{[1 + (j-1)\lambda]^{\beta+1} [1 - \alpha + (j-1)\lambda]}$$
 ∞

$$= (1 - \alpha) \sum_{j=2}^{\infty} \lambda_j = (1 - \alpha) \left(\sum_{j=1}^{\infty} \lambda_j - \lambda_1\right) < 1 - \alpha$$

which is the condition (5) for $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z)$. Thus $f(z) \in T^c L_{\beta}(\alpha)$.

Conversely, we suppose that $f(z) \in T^c L_{\beta}(\alpha), f(z) = z - \sum_{j=2}^{\infty} a_j z^j, a_j \ge 0$

and we take $\lambda_j = \frac{[1 + (j-1)\lambda]^{\beta+1}[1 - \alpha + (j-1)\lambda]}{1 - \alpha}a_j \ge 0, \ j=2,3, ..., \text{ with}$

$$\lambda_1 = 1 - \sum_{j=2}^{\infty} \lambda_j \,.$$

Using the condition (5), we obtain

$$\sum_{j=2}^{\infty} \lambda_j = \frac{1}{1-\alpha} \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta+1} [1 - \alpha + (j-1)\lambda] a_j < \frac{1}{1-\alpha} (1-\alpha) = 1.$$

Then
$$f(z) = \sum_{j=1}^{\infty} \lambda_j f_j$$
, where $\lambda_j \ge 0$, j=1,2, ... and $\sum_{j=1}^{\infty} \lambda_j = 1$.

This completes our proof.

Corolary 3.1. The extreme points of $T^cL_{\beta}(\alpha)$ are $f_1(z)=z$ and

$$f_j(z) = z - \frac{1 - \alpha}{(1 + (j-1)\lambda)^{\beta+1}(1 - \alpha + (j-1)\lambda)} z^j, \ j = 2, 3, \dots$$

Theorem 3.6. Let $f(z) \in T^c L_{\beta}(\alpha), \ \beta \geq 0, \ \lambda \geq 0, \ \alpha \in [0,1), \ \mu > 0$ and $f_j(z) = z - \frac{1-\alpha}{[(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]} z^j, \ j=2,3...$ Then for $z = re^{i\theta} \ (0 < r < 1), \ we have$

$$\int_{0}^{2\pi} |f(z)|^{\mu} d\theta \le \int_{0}^{2\pi} |f_j(re^{i\theta})|^{\mu} d\theta.$$

Proof We have to show that

$$\int_0^{2\pi} \left| 1 - \sum_{j=2}^{\infty} a_j z^{j-1} \right|^{\mu} d\theta \le \int_0^{2\pi} \left| 1 - \frac{1 - \alpha}{\left[(1 + (j-1)\lambda)^{\beta+1} (1 + (j-1)\lambda - \alpha) \right]} z^{j-1} \right|^{\mu} d\theta.$$

From Theorem 2.3 we deduce that it is sufficiently to prove that

$$1 - \sum_{j=2}^{\infty} a_j z^{j-1} \prec 1 - \frac{1 - \alpha}{[(1 + (j-1)\lambda)^{\beta+1}(1 + (j-1)\lambda - \alpha)]} z^{j-1}.$$

Considering

$$1 - \sum_{j=2}^{\infty} a_j z^{j-1} = 1 - \frac{1 - \alpha}{[(1 + (j-1)\lambda)^{\beta+1}(1 + (j-1)\lambda - \alpha)]} w(z)^{j-1}$$

we find that

$$\{w(z)\}^{j-1} = \frac{[(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]}{1-\alpha} \sum_{j=2}^{\infty} a_j z^{j-1}$$

which readily yields w(0) = 0.

By using the condition (5), we can write

$$1 - \alpha > [(1 + \lambda)^{\beta+1}(1 + \lambda - \alpha)]a_2 + [(1 + 2\lambda)^{\beta+1}(1 + 2\lambda - \alpha)]a_3 + \dots$$

$$+[(1 + (j-1)\lambda)^{\beta+1}(1 + (j-1)\lambda - \alpha)]a_j + [(1 + j\lambda)^{\beta+1}(1 + j\lambda - \alpha)]a_{j+1} + \dots$$

$$\geq \sum_{i=2}^{\infty} [(1 + (j-1)\lambda)^{\beta+1}(1 + (j-1)\lambda - \alpha)]a_i$$

$$= [(1 + (j-1)\lambda)^{\beta+1}(1 + (j-1)\lambda - \alpha)]\sum_{i=2}^{\infty} a_i.$$

Thus

$$\sum_{j=2}^{\infty} a_j < \frac{1-\alpha}{[(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]}$$

and

$$|\{w(z)\}|^{j-1} = \left| \frac{[(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]}{1-\alpha} \sum_{j=2}^{\infty} a_j z^{j-1} \right|$$

$$\leq \frac{\left[(1 + (j-1)\lambda)^{\beta+1} (1 + (j-1)\lambda - \alpha) \right]}{1 - \alpha} \sum_{j=2}^{\infty} a_j |z|^{j-1} < |z| < 1.$$

This completes our theorem's proof.

REMARK 3.2. We notice that in the particulary case, obtained for $\lambda = 1$ and $\beta \in \mathbb{N}$, we find similarly results for the class $T_n^c(\alpha)$ of the n-convex functions of order α with negative coefficients.

References

- [1] M. Acu, S. Owa, *Note on a class of starlike functions*, Proceeding Of the International Short Joint Work on Study on Calculus Operators in Univalent Function Theory Kyoto 2006, 1-10.
- [2] M. Acu, I. Dorca, S. Owa, On some starlike functions with negative coefficients (to appear).
- [4] D. Blezu, On the n-uniform close to convex functions with respect to a convex domain, General Mathematics, Vol. 9, Nr. 3 4, 3 14.
- [5] J.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23(1995), 481-519.
- [6] G. S. Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj Napoca, 1983.
- [7] G. S. Sălăgean, Geometria Planului Complex, Ed. Promedia Plus, Cluj Napoca, 1999.
- [8] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 5(1975), 109-116.

Authors:

Mugur Acu
"Lucian Blaga" University of Sibiu,
Department of Mathematics,
Str. Dr. I. Raţiu, Nr. 5–7, 550012 - Sibiu, Romania.
email: acu_mugur@yahoo.com

Irina Dorca "Lucian Blaga" University of Sibiu, Department of Mathematics, Str. Dr. I. Raţiu, Nr. 5–7, 550012 - Sibiu, Romania. email: ira_dorca@yahoo.com

Daniel Breaz
"1 Decembrie 1918" University of Alba Iulia,
Department of Mathematics
Alba Iulia, Romania.
email: dbreaz@uab.ro