# ABOUT SOME CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS 

Mugur Acu, Irina Dorca and Daniel Breaz


#### Abstract

Our subject of study in this paper is represented by a class of convex functions with negative coefficients defined by using a modified Sălăgean operator.


2000 Mathematics Subject Classification: 30C45.
Keywords and phrases: differential opperators, convex, starlike, regular, subordination.

## 1. Introduction

Let $\mathcal{H}(U)$ to be the set of functions which are regular in the unit disc $U$,

$$
A=\left\{f \in \mathcal{H}(U): f(0)=f^{\prime}(0)-1=0\right\}
$$

and $S=\{f \in A: f$ is univalent in $U\}$.
In [7] the subfamily $T$ of $S$ consisting of functions $f$ of the form

$$
\begin{equation*}
f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U \tag{1}
\end{equation*}
$$

was introduced.
The purpose of this paper is to define a class of convex functions with negative coefficients and to give some properties of its by using a modified Sălăgean operator.
M. Acu, I. Dorca, D. Breaz - About some convex functions with negative...

## 2. Preliminary Results

Let $D^{n}$ be the Sălăgean differential operator (see [6]) $D^{n}: A \rightarrow A, n \in \mathbb{N}$, defined as:

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
D^{n} f(z)=D\left(D^{n-1} f(z)\right)
\end{gathered}
$$

REMARK 2.1. If $f \in T, f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U$ then $D^{n} f(z)=z-\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}$.

Definition 2.1. [1] Let $\beta, \lambda \in \mathbb{R}, \beta \geq 0, \lambda \geq 0$ and $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$. We denote by $D_{\lambda}^{\beta}$ the linear operator defined by

$$
\begin{gathered}
D_{\lambda}^{\beta}: A \rightarrow A \\
D_{\lambda}^{\beta} f(z)=z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta} a_{j} z^{j} .
\end{gathered}
$$

Theorem 2.1. [6] If $f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U$ then the next assertions are equivalent:
(i) $\sum_{j=2}^{\infty} j a_{j} \leq 1$
(ii) $f \in T$
(iii) $f \in T^{*}$, where $T^{*}=T \bigcap S^{*}$ and $S^{*}$ is the well-known class of starlike functions.

For $\alpha \in[0,1)$ and $n \in \mathbb{N}$, we denote

$$
S_{n}^{c}(\alpha)=\left\{f \in A: \operatorname{Re} \frac{D^{n+2} f(z)}{D^{n+1} f(z)}>\alpha, z \in U\right\}
$$

the set of n-convex functions of order $\alpha$.
M. Acu, I. Dorca, D. Breaz - About some convex functions with negative...

Definition 2.2 [5] Let $I_{c}: A \rightarrow A$ be the integral operator defined by $f=I_{c}(F)$, where $c \in(-1, \infty), F \in A$ and

$$
\begin{equation*}
f(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} F(t) d t \tag{2}
\end{equation*}
$$

We note if $F \in A$ is a function of the form (1), then

$$
\begin{equation*}
f(z)=I_{c} F(z)=z-\sum_{j=2}^{\infty} \frac{c+1}{c+j} a_{j} z^{j} \tag{3}
\end{equation*}
$$

We denote by $f * g$ the modified Hadamard product of two functions $f(z), g(z) \in T, f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j},\left(a_{j} \geq 0, j=2,3, \ldots\right)$ and $g(z)=z-$ $\sum_{j=2}^{\infty} b_{j} z^{j},\left(b_{j} \geq 0, \mathrm{j}=2,3, \ldots\right)$, is defined by

$$
(f * g)(z)=z-\sum_{j=2}^{\infty} a_{j} b_{j} z^{j}
$$

An analytic function $f$ is set to be subordinate to an analytic function $g$ if $f(z)=g(w(z)), z \in U$, for some analytic function $w$ with $w(0)=0$ and $|w(z)|<1(z \in U)$. We denote this subordination by $f \prec g$.

ThEOREM 2.2. [4] If $f$ and $g$ are analytic in $U$ with $f \prec g$, then for $\mu>0$ and $z=r e^{i \theta}(0<r<1)$, we have

$$
\int_{0}^{2 \pi}|f(z)|^{\mu} d \theta \leqq \int_{0}^{2 \pi}|g(z)|^{\mu} d \theta
$$

Definition 2.3. [2] We consider the integral operator $I_{c+\delta}: A \rightarrow A$, $0<u \leq 1,1 \leq \delta<\infty, 0<c<\infty$, defined by

$$
\begin{equation*}
f(z)=I_{c+\delta}(F(z))=(c+\delta) \int_{0}^{1} u^{c+\delta-2} F(u z) d u \tag{4}
\end{equation*}
$$

Remark 2.2. For $F(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$. From (4) we obtain

$$
f(z)=z+\sum_{j=2}^{\infty} \frac{c+\delta}{c+j+\delta-1} a_{j} z^{j} .
$$

Also, we notice that $0<\frac{c+\delta}{c+j+\delta-1}<1$, where $0<c<\infty, j \geq 2$, $1 \leq \delta<\infty$.

Remark 2.3. It is easy to prove that for $F(z) \in T$ and $f(z)=I_{c+\delta}(F(z))$, we have $f(z) \in T$, where $I_{c+\delta}$ is the integral operator defined by (4).

## 3. Main Results

DEFINITION 3.1. Let $f \in T, f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots$, $z \in U$. We say that $f$ is in the class $T^{c} L_{\beta}(\alpha)$ if:

$$
\operatorname{Re} \frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}>\alpha, \quad \alpha \in[0,1), \quad \lambda \geq 0, \quad \beta \geq 0, \quad z \in U
$$

Theorem 3.1. Let $\alpha \in[0,1), \lambda \geq 0$ and $\beta \geq 0$. The function $f \in T$ of the form (1) is in the class $T^{c} L_{\beta}(\alpha)$ iff

$$
\begin{equation*}
\sum_{j=2}^{\infty}\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right] a_{j}<1-\alpha \tag{5}
\end{equation*}
$$

Proof. Let $f \in T^{c} L_{\beta}(\alpha)$, with $\alpha \in[0,1), \lambda \geq 0$ and $\beta \geq 0$. We have

$$
\operatorname{Re} \frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}>\alpha .
$$

If we take $z \in[0,1), \beta \geq 0, \lambda \geq 0$, we have (see Definition 2.1):

$$
\begin{equation*}
\frac{1-\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j-1}}{1-\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+1} a_{j} z^{j-1}}>\alpha \tag{6}
\end{equation*}
$$

From (6) we obtain:

$$
\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha) a_{j} z^{j-1}<1-\alpha
$$

Letting $z \rightarrow 1^{-}$along the real axis we have:

$$
\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha) a_{j}<1-\alpha .
$$

Conversely, let take $f \in T$ for which the relation (5) hold.
The condition $\operatorname{Re} \frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}>\alpha$ is equivalent with

$$
\begin{equation*}
\alpha-R e\left(\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}-1\right)<1 . \tag{7}
\end{equation*}
$$

We have

$$
\begin{gathered}
\alpha-\operatorname{Re}\left(\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}-1\right) \leq \alpha+\left|\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}-1\right| \\
\\
=\alpha+\left|\frac{\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+1} a_{j}[(j-1) \lambda] z^{j-1}}{1-\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1} a_{j} z^{j-1}}\right|
\end{gathered}
$$

M. Acu, I. Dorca, D. Breaz - About some convex functions with negative...

$$
\begin{aligned}
& \leq \alpha+\frac{\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1} a_{j}|1-j| \lambda|z|^{j-1}}{1-\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1} a_{j}|z|^{j-1}} \\
& =\alpha+\frac{\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1} a_{j}(j-1) \lambda|z|^{j-1}}{1-\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1} a_{j}|z|^{j-1}} \\
& <\alpha+\frac{\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1} a_{j}(j-1) \lambda}{1-\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1} a_{j}}<1 .
\end{aligned}
$$

Thus

$$
\alpha+\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1} a_{j}[(j-1) \lambda+1-\alpha]<1,
$$

which is the condition (5).
REmark 3.1. Using the condition (5) it is easy to prove that $T^{c} L_{\beta+1}(\alpha) \subseteq$ $T^{c} L_{\beta}(\alpha)$, where $\beta \geq 0, \alpha \in[0,1)$ and $\lambda \geq 0$.

THEOREM 3.2. If $f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j} \in T^{c} L_{\beta}(\alpha),\left(a_{j} \geq 0, j=2,3, \ldots\right)$, $g(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j} \in T^{c} L_{\beta}(\alpha),\left(b_{j} \geq 0, j=2,3, \ldots\right), \alpha \in[0,1), \lambda \geq 0, \beta \geq 0$, then $f(z) * g(z) \in T^{c} L_{\beta}(\alpha)$.

Proof. We have

$$
\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1}[(j-1) \lambda+1-\alpha] a_{j}<1-\alpha
$$

M. Acu, I. Dorca, D. Breaz - About some convex functions with negative...
and

$$
\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1}[(j-1) \lambda+1-\alpha] b_{j}<1-\alpha
$$

We know from the definition of the modified convolution product that $f(z) * g(z)=z-\sum_{j=2}^{\infty} a_{j} b_{j} z^{j}$. From $g(z) \in T$, by using Theorem 2.1, we have $\sum_{j=2}^{\infty} j b_{j} \leq 1$. We notice that $b_{j}<1, j=2,3, \ldots$.

Thus,

$$
\begin{gathered}
\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1}[(j-1) \lambda+1-\alpha] a_{j} b_{j}<\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1}[(j-1) \lambda+1-\alpha] a_{j} \\
<1-\alpha
\end{gathered}
$$

This means that $f(z) * g(z) \in T^{c} L_{\beta}(\alpha), \quad \beta \geq 0, \quad \alpha \in[0,1)$ and $\lambda \geq 0$.
THEOREM 3.3. If $F(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j} \in T^{c} L_{\beta}(\alpha)$, then $f(z)=I_{c} F(z) \in$ $T^{c} L_{\beta}(\alpha)$, where $I_{c}$ is the integral operator defined by (2).

Proof. We have $f(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j}$, where $b_{j}=\frac{c+1}{c+j} a_{j}, \quad c \in(-1, \infty)$, $j=2,3, \ldots$.

Thus $\quad b_{j}<a_{j}, \quad \mathrm{j}=2,3 \ldots$ and using the condition (5) for $F(z)$ we obtain $\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1}[(j-1) \lambda+1-\alpha] b_{j}<\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1}[(j-1) \lambda+1-\alpha] a_{j}<1-\alpha$. This completes our proof.

ThEOREM 3.4. Let $F(z)$ be in the class $T^{c} L_{\beta}(\alpha), F(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}$, $a_{j} \geq 0, j \geq 2$. Then $f(z)=I_{c+\delta}(F(z)) \in T^{c} L_{\beta}(\alpha)$, where $I_{c+\delta}$ is the integral operator defined by (4).

Proof. From $F(z) \in T^{c} L_{\beta}(\alpha)$ we have (see Theorem 3.1)

$$
\sum_{j=2}^{\infty}\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right] a_{j}<1-\alpha
$$

M. Acu, I. Dorca, D. Breaz - About some convex functions with negative...
where $\lambda \geq 0, \beta \geq 0,0<c<\infty$ and $1 \leq \delta<\infty$. Let $f(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j}$, where (see Remark 3.2)

$$
b_{j}=\frac{c+\delta}{c+\delta+j-1} a_{j} \geq 0 \text { and } 0<\frac{c+\delta}{c+\delta+j-1}<1
$$

From Remark 3.3 we obtain $f(z) \in T$. We have $\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right] b_{j}<\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right] a_{j}$.

Thus,

$$
\begin{gathered}
\sum_{j=2}^{\infty}\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right] b_{j} \leq \sum_{j=2}^{\infty}\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right] a_{j} \\
<1-\alpha
\end{gathered}
$$

This completes our proof.

Theorem 3.5. Let $f_{1}(z)=z$ and

$$
f_{j}(z)=z-\frac{1-\alpha}{(1+(j-1) \lambda)^{\beta+1}(1-\alpha+(j-1) \lambda)} z^{j}, j=2,3, \ldots
$$

Then $f \in T^{c} L_{\beta}(\alpha)$ iff it can be expressed in the form $f(z)=\sum_{j=1}^{\infty} \lambda_{j} f_{j}(z)$, where $\lambda_{j} \geq 0$ and $\sum_{j=1}^{\infty} \lambda_{j}=1$.

Proof. Let $f(z)=\sum_{j=1}^{\infty} \lambda_{j} f_{j}(z), \lambda_{j} \geq 0, \mathrm{j}=1,2, \ldots$, with $\sum_{j=1}^{\infty} \lambda_{j}=1$. We obtain

$$
\begin{gathered}
f(z)=\sum_{j=1}^{\infty} \lambda_{j} f_{j}(z)=\sum_{j=1}^{\infty} \lambda_{j}\left(z-\frac{1-\alpha}{[1+(j-1) \lambda]^{\beta+1}[1-\alpha+(j-1) \lambda]} z^{j}\right) \\
=z-\sum_{j=2}^{\infty} \lambda_{j} \frac{1-\alpha}{[1+(j-1) \lambda]^{\beta+1}[1-\alpha+(j-1) \lambda]} z^{j} .
\end{gathered}
$$

M. Acu, I. Dorca, D. Breaz - About some convex functions with negative...

We have

$$
\begin{gathered}
\sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1}[1-\alpha+(j-1) \lambda] \lambda_{j} \frac{1-\alpha}{[1+(j-1) \lambda]^{\beta+1}[1-\alpha+(j-1) \lambda]} \\
=(1-\alpha) \sum_{j=2}^{\infty} \lambda_{j}=(1-\alpha)\left(\sum_{j=1}^{\infty} \lambda_{j}-\lambda_{1}\right)<1-\alpha
\end{gathered}
$$

which is the condition (5) for $f(z)=\sum_{j=1}^{\infty} \lambda_{j} f_{j}(z)$. Thus $f(z) \in T^{c} L_{\beta}(\alpha)$.
Conversely, we suppose that $f(z) \in T^{c} L_{\beta}(\alpha), f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0$ and we take $\lambda_{j}=\frac{[1+(j-1) \lambda]^{\beta+1}[1-\alpha+(j-1) \lambda]}{1-\alpha} a_{j} \geq 0, j=2,3, \ldots$, with $\lambda_{1}=1-\sum_{j=2}^{\infty} \lambda_{j}$.

Using the condition (5), we obtain
$\sum_{j=2}^{\infty} \lambda_{j}=\frac{1}{1-\alpha} \sum_{j=2}^{\infty}[1+(j-1) \lambda]^{\beta+1}[1-\alpha+(j-1) \lambda] a_{j}<\frac{1}{1-\alpha}(1-\alpha)=1$.
Then $f(z)=\sum_{j=1}^{\infty} \lambda_{j} f_{j}$, where $\lambda_{j} \geq 0, \mathrm{j}=1,2, \ldots$ and $\sum_{j=1}^{\infty} \lambda_{j}=1$.
This completes our proof.
Corolary 3.1. The extreme points of $T^{c} L_{\beta}(\alpha)$ are $f_{1}(z)=z$ and

$$
f_{j}(z)=z-\frac{1-\alpha}{(1+(j-1) \lambda)^{\beta+1}(1-\alpha+(j-1) \lambda)} z^{j}, j=2,3, \ldots
$$

Theorem 3.6. Let $f(z) \in T^{c} L_{\beta}(\alpha), \beta \geq 0, \lambda \geq 0, \alpha \in[0,1), \mu>0$ and $f_{j}(z)=z-\frac{1-\alpha}{\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right]} z^{j}, j=2,3 \ldots$. Then for $z=r e^{i \theta}(0<r<1)$, we have

$$
\int_{0}^{2 \pi}|f(z)|^{\mu} d \theta \leq \int_{0}^{2 \pi}\left|f_{j}\left(r e^{i \theta}\right)\right|^{\mu} d \theta
$$

M. Acu, I. Dorca, D. Breaz - About some convex functions with negative...

Proof We have to show that

$$
\int_{0}^{2 \pi}\left|1-\sum_{j=2}^{\infty} a_{j} z^{j-1}\right|^{\mu} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{1-\alpha}{\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right]} z^{j-1}\right|^{\mu} d \theta
$$

From Theorem 2.3 we deduce that it is sufficiently to prove that

$$
1-\sum_{j=2}^{\infty} a_{j} z^{j-1} \prec 1-\frac{1-\alpha}{\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right]} z^{j-1}
$$

Considering

$$
1-\sum_{j=2}^{\infty} a_{j} z^{j-1}=1-\frac{1-\alpha}{\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right]} w(z)^{j-1}
$$

we find that

$$
\{w(z)\}^{j-1}=\frac{\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right]}{1-\alpha} \sum_{j=2}^{\infty} a_{j} z^{j-1}
$$

which readily yields $w(0)=0$.
By using the condition (5), we can write

$$
\begin{gathered}
1-\alpha>\left[(1+\lambda)^{\beta+1}(1+\lambda-\alpha)\right] a_{2}+\left[(1+2 \lambda)^{\beta+1}(1+2 \lambda-\alpha)\right] a_{3}+\ldots \\
+\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right] a_{j}+\left[(1+j \lambda)^{\beta+1}(1+j \lambda-\alpha)\right] a_{j+1}+\ldots \\
\geq \sum_{i=2}^{\infty}\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right] a_{i} \\
=\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right] \sum_{i=2}^{\infty} a_{i}
\end{gathered}
$$

Thus

$$
\sum_{j=2}^{\infty} a_{j}<\frac{1-\alpha}{\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right]}
$$

and

$$
|\{w(z)\}|^{j-1}=\left|\frac{\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right]}{1-\alpha} \sum_{j=2}^{\infty} a_{j} z^{j-1}\right|
$$

M. Acu, I. Dorca, D. Breaz - About some convex functions with negative...

$$
\leq \frac{\left[(1+(j-1) \lambda)^{\beta+1}(1+(j-1) \lambda-\alpha)\right]}{1-\alpha} \sum_{j=2}^{\infty} a_{j}|z|^{j-1}<|z|<1
$$

This completes our theorem's proof.
REmARK 3.2. We notice that in the particulary case, obtained for $\lambda=1$ and $\beta \in \mathbb{N}$, we find similarly results for the class $T_{n}^{c}(\alpha)$ of the $n$-convex functions of order $\alpha$ with negative coefficients.

## References

[1] M. Acu, S. Owa, Note on a class of starlike functions, Proceeding Of the International Short Joint Work on Study on Calculus Operators in Univalent Function Theory - Kyoto 2006, 1-10.
[2] M. Acu, I. Dorca, S. Owa, On some starlike functions with negative coefficients (to appear).
[4] D. Blezu, On the n-uniform close to convex functions with respect to a convex domain, General Mathematics, Vol. 9, Nr. 3-4, 3-14.
[5] J.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23(1995), 481-519.
[6] G. S. Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj - Napoca, 1983.
[7] G. S. Sălăgean, Geometria Planului Complex, Ed. Promedia Plus, Cluj - Napoca, 1999.
[8] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 5(1975), 109-116.

## Authors:

Mugur Acu
"Lucian Blaga" University of Sibiu, Department of Mathematics, Str. Dr. I. Raţiu, Nr. 5-7, 550012-Sibiu, Romania. email: acu_mugur@yahoo.com
M. Acu, I. Dorca, D. Breaz - About some convex functions with negative...

Irina Dorca
"Lucian Blaga" University of Sibiu, Department of Mathematics, Str. Dr. I. Raţiu, Nr. 5-7, 550012-Sibiu, Romania. email: ira_dorca@yahoo.com

Daniel Breaz
"1 Decembrie 1918" University of Alba Iulia, Department of Mathematics
Alba Iulia, Romania.
email: dbreaz@uab.ro

