THE MATRIX TRANSFORMATIONS ON ORLICZ SPACE OF χ

N.Subramanian,S.Krishnamoorthy and S. Balasubramanian

Abstract. Let χ denote the space of all gai sequences and Λ the space of all analytic sequences. First we show that the set $E=\left\{s^{(k)}: k=1,2,3, \cdots\right\}$ is a determining set for χ_{M}. The set of all finite matrices transforming χ_{M} into FKspace Y denoted by $\left(\chi_{M}: Y\right)$. We characterize the classes $\left(\chi_{M}: Y\right)$ when $Y=$ $\left(c_{0}\right)_{\pi}, c_{\pi}, \chi_{M}, \ell_{\pi}, \ell_{s}, \Lambda_{\pi}, h_{\pi}$. In summary we have the following table:

\nearrow	$\left(c_{0}\right)_{\pi}$	c_{π}	χ_{M}	ℓ_{π}	ℓ_{s}	Λ_{π}	h_{π}
χ_{M}	Necessary and sufficient condition on the matrix are obtained						

But the approach to obtain these result in the present paper is by determining set for χ_{M}. First, we investigate a determining set for χ_{M} and then we characterize the classes of matrix transformations involving χ_{M} and other known sequence spaces.

2000 Mathematics Subject Classification: 40A05,40C05,40D05.

1. Introduction

A complex sequence, whose $k^{\text {th }}$ terms is x_{k} is denoted by $\left\{x_{k}\right\}$ or simply x. Let w be the set of all sequences $x=\left(x_{k}\right)$ and ϕ be the set of all finite sequences. Let ℓ_{∞}, c, c_{0} be the sequence spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$ respectively. In respect of ℓ_{∞}, c, c_{0} we have
$\|x\|={ }_{k}^{\text {sup }}\left|x_{k}\right|$, where $x=\left(x_{k}\right) \in c_{0} \subset c \subset \ell_{\infty}$. A sequence $x=\left\{x_{k}\right\}$ is said to be analytic if $\sup _{k}\left|x_{k}\right|^{1 / k}<\infty$. The vector space of all analytic sequences will be denoted by Λ. A sequence x is called entire sequence if $\lim _{k \rightarrow \infty}\left|x_{k}\right|^{1 / k}=0$. The vector space of all entire sequences will be denoted by $\Gamma . \chi$ was discussed in Kamthan [19]. Matrix transformation involving χ were characterized by Sridhar [20] and Sirajiudeen [21]. Let χ be the set of all those sequences $x=\left(x_{k}\right)$ such that $\left(k!\left|x_{k}\right|\right)^{1 / k} \rightarrow 0$ as $k \rightarrow \infty$. Then χ is a metric space with the metric

$$
d(x, y)=\sup _{k}\left\{\left(k!\left|x_{k}-y_{k}\right|\right)^{1 / k}: k=1,2,3, \cdots\right\}
$$

Orlicz [4] used the idea of Orlicz function to construct the space $\left(L^{M}\right)$. Lindenstrauss and Tzafriri [5] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space ℓ_{M} contains a subspace isomorphic to $\ell_{p}(1 \leq p<\infty)$. Subsequently different classes of sequence spaces defined by Parashar and Choudhary[6], Mursaleen et al.[7], Bektas and Altin[8], Tripathy et al.[9], Rao and subramanian $[10]$ and many others. The Orlicz sequence spaces are the special cases of Orlicz spaces studied in Ref[11].
$\operatorname{Recall}([4],[11])$ an Orlicz function is a function $M:[0, \infty) \rightarrow[o, \infty)$ which is continuous, non-decreasing and convex with $M(0)=0, M(x)>0$, for $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. If convexity of Orlicz function M is replaced by $M(x+y) \leq M(x)+M(y)$ then this function is called modulus function, introduced by Nakano[18] and further discussed by Ruckle[12] and Maddox[13] and many others.
An Orlicz function M is said to satisfy $\Delta_{2}-$ condition for all values of u, if there exists a constant $K>0$, such that $M(2 u) \leq K M(u)(u \geq 0)$. The $\Delta_{2}-$ condition is equivalent to $M(\ell u) \leq K \ell M(u)$, for all values of u and for $\ell>1$. Lindenstrauss and Tzafriri[5] used the idea of Orlicz function to construct Orlicz sequence space

$$
\begin{equation*}
\ell_{M}=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { forsome } \rho>0\right\} \tag{1}
\end{equation*}
$$

The space ℓ_{M} with the norm

$$
\begin{equation*}
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\} \tag{2}
\end{equation*}
$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t)=$ $t^{p}, 1 \leq p<\infty$, the space ℓ_{M} coincide with the classical sequence space ℓ_{p}. Given a sequence $x=\left\{x_{k}\right\}$ its $n^{\text {th }}$ section is the sequence $x^{(n)}=\left\{x_{1}, x_{2}, \ldots, x_{n}, 0,0, \ldots\right\}$ $\delta^{(n)}=(0,0, \ldots, 1,0,0, \ldots), 1$ in the $n^{t h}$ place and zero's else where; and $s^{(k)}=$ $(0,0, \ldots, 1,-1,0, \ldots), 1$ in the $n^{t h}$ place, -1 in the $(n+1)^{t h}$ place and zero's else where. An FK-space (Frechet coordinate space) is a Frechet space which is made up of numerical sequences and has the property that the coordinate functionals $p_{k}(x)=$ $x_{k}(k=1,2,3, \ldots)$ are continuous. We recall the following definitions [see [15]].
An FK-space is a locally convex Frechet space which is made up of sequences and has the property that coordinate projections are continuous. An metric-space (X, d) is said to have AK (or sectional convergence) if and only if $d\left(x^{(n)}, x\right) \rightarrow x$ as $n \rightarrow \infty$.[see[15]] The space is said to have AD (or) be an AD space if ϕ is dense in X. We note that AK implies AD by [14].
If X is a sequence space, we define
(i) $X^{\prime}=$ the continuous dual of X.
(ii) $X^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|<\infty\right.$, foreach $\left.x \in X\right\}$;
(iii) $X^{\beta}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty} a_{k} x_{k}\right.$ is convergent, foreach $\left.x \in X\right\}$;
(iv) $X^{\gamma}=\left\{a=\left(a_{k}\right): \stackrel{\text { sup }}{n}\left|\sum_{k=1}^{n} a_{k} x_{k}\right|<\infty\right.$, foreach $\left.x \in X\right\}$;
(v)Let X be an FK-space \supset. Then $X^{f}=\left\{f\left(\delta^{(n)}\right): f \in X^{\prime}\right\}$.
$X^{\alpha}, X^{\beta}, X^{\gamma}$ are called the $\alpha-$ (or Kö the-T öeplitz)dual of $X, \beta-$ (or generalized Kö
 $Y^{\mu} \subset X^{\mu}$, for $\mu=\alpha, \beta$, or γ.
Lemma 1. (See (15,Theorem7.27)). Let X be an FK-space $\supset \phi$. Then (i) $X^{\gamma} \subset X^{f}$. (ii)If X has $\mathrm{AK}, X^{\beta}=X^{f}$. (iii)If X has $\mathrm{AD}, X^{\beta}=X^{\gamma}$.

2.Definitions and Prelimiaries

Let w denote the set of all complex double sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$ and $M:[0, \infty) \rightarrow$ $[0, \infty)$ be an Orlicz function, or a modulus function. Let
$\chi_{M}=\left\{x \in w: \lim _{k \rightarrow \infty}\left(M\left(\frac{\left(k!\left|x_{k}\right|\right)^{1 / k}}{\rho}\right)\right)=0\right.$ forsome $\left.\rho>0\right)$,
$\Gamma_{M}=\left\{x \in w: \lim _{k \rightarrow \infty}\left(M\left(\frac{\left|x_{k}\right|^{1 / k}}{\rho}\right)\right)=0\right.$ forsome $\left.\rho>0\right)$ and
$\Lambda_{M}=\left\{x \in w: \sup _{k}\left(M\left(\frac{\left|x_{k}\right|^{1 / k}}{\rho}\right)\right)<\infty\right.$ forsome $\left.\rho>0\right)$
The space χ_{M} is a metric space with the metric

$$
\begin{equation*}
d(x, y)=\inf \left\{\rho>0: \sup _{k}\left(M\left(\frac{\left(k!\left|x_{k}-y_{k}\right|\right)^{1 / k}}{\rho}\right)\right) \leq 1\right\} \tag{3}
\end{equation*}
$$

The space Γ_{M} and Λ_{M} is a metric space with the metric

$$
\begin{equation*}
d(x, y)=\inf \left\{\rho>0: \sup _{k}\left(M\left(\frac{\left|x_{k}-y_{k}\right|^{1 / k}}{\rho}\right)\right) \leq 1\right\} \tag{4}
\end{equation*}
$$

Let ℓ_{s} denote the space of all those complex sequences $x=\left\{x_{k}\right\}$ such that $\left\{x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, \cdots x_{1}+x_{2}+\cdots+x_{k}+\cdots\right\}$ belongs to ℓ with the norm $\|x\|_{s}=\left|x_{1}\right|+\left|x_{1}+x_{2}\right|+\cdots+\left|x_{1}+x_{2}+\cdots+x_{k}\right|+\cdots$,
$\Gamma_{\pi}=\left\{x=\left\{x_{k}\right\}:\left(\frac{x_{k}}{\pi_{k}}\right) \in \Gamma\right\}$ and $\Lambda_{\pi}=\left\{x=\left\{x_{k}\right\}:\left(\frac{x_{k}}{\pi_{k}}\right) \in \Lambda\right\}$.
Then Γ_{π} and Λ_{π} are FK-spaces with the metric $d(x, y)=\sup _{k}\left\{\left|\frac{x_{k}-y_{k}}{\pi_{k}}\right|^{1 / k}: k=1,2,3, \cdots\right\}$. $h_{\pi}=\left\{x=\left\{x_{k}\right\}:\left(\frac{x_{k}}{\pi_{k}}\right) \in h\right\}$. Then h_{π} is a BK-space with the norm $\|x\|=\sum_{k=1}^{\infty} k\left|\frac{x_{k}}{\pi_{k}}-\frac{x_{k+1}}{\pi_{k+1}}\right|$.
$\left(\ell_{\infty}\right)_{\pi}=m_{\pi}=\left\{x=\left\{x_{k}\right\} \in w:\left(\frac{x_{k}}{\pi_{k}}\right) \in m\right\},\left(c_{0}\right)_{\pi}=\left\{x=\left\{x_{k}\right\} \in w:\left(\frac{x_{k}}{\pi_{k}}\right) \in c_{0}\right\}$, $(c)_{\pi}=\left\{x=\left\{x_{k}\right\} \in w:\left(\frac{x_{k}}{\pi_{k}}\right) \in c\right\}$. In respect of $m_{\pi},\left(c_{0}\right)_{\pi}, c_{\pi}$ are BK-spaces with the norm $\|x\|_{\pi}=\sup _{k}\left|\frac{x_{k}}{\pi_{k}}\right|$,
$\ell_{\pi}=\left\{x=\left\{x_{k}\right\} \in w:\left(\frac{x_{k}}{\pi_{k}}\right) \in \ell\right\}, \ell_{\pi}$ is a BK-space with the norm $\|x\|=\sum_{k=1}^{\infty}\left|\frac{x_{k}}{\pi_{k}}\right|$. We call $\left(c_{0}\right)_{\pi}, c_{\pi}, \ell_{\pi}, \Lambda_{\pi}, h_{\pi}$ are rate spaces. [See [24]]

Let X be an BK-space. Then $D=D(X)=\{x \in \phi:\|x\| \leq 1\}$ we do not assumethat $X \supset \phi$ (i.e) $D=\phi \bigcap($ unit closed sphere in $X)$

Let X be an BK space. A subset E of ϕ will be called a determining set for X if $D(X)$ is the absolutely convexhull of E. In respect of a metric space $(X, d), D=\{x \in \phi: d(x, 0) \leq 1\}$.

Given a sequence $x=\left\{x_{k}\right\}$ and an infinite matrix $A=\left(a_{n k}\right), n, k=1,2, \cdots$ then $A-$ transform of x is the sequence $y=\left(y_{n}\right)$ where $y_{n}=\sum_{k=1}^{\infty} a_{n k} x_{k}(n, k=1,2, \cdots)$. Whenever $\sum a_{n k} x_{k}$ exists.

Let X and Y be FK-spaces. If $y \in Y$ whenever $x \in X$, then the class of all matrices A is denoted by $(X: Y)$.
Lemma 2. Let X be a FK-space and E is determining set for X. Let Y be an FK-space and A is a infinite matrix. Suppose that either X has AK or A is row finite. Then $A \in(X: Y)$ if and only if (1) The columns of A belong to Y and (2) $A[E]$ is a bounded subset of Y.

3.Main Results

Proposition 1. χ_{M} has AK, where M is a modulus function.
Proof: Let $x=\left\{x_{k}\right\} \in \chi_{M}$, but then $\left\{M\left(\frac{\left(k!\left|x_{k}\right|\right)^{1 / k}}{\rho}\right)\right\} \in \chi$, and hence $\sup _{k \geq n+1}\left(M\left(\frac{\left(k!\left|x_{k}\right|\right)^{1 / k}}{\rho}\right)\right) \rightarrow$ as $n \rightarrow \infty$. Therefore

$$
\begin{equation*}
d\left(x, x^{[n]}\right)=\inf \left\{\rho>0: \sup _{k \geq n+1}\left(M\left(\frac{\left(k!\left|x_{k}\right|\right)^{1 / k}}{\rho}\right)\right) \leq 1\right\} \rightarrow 0 \text { as } n \rightarrow \infty \tag{5}
\end{equation*}
$$

$\Rightarrow x^{[n]} \rightarrow x$ as $n \rightarrow \infty$, implying that χ_{M} has AK. This completes the proof.
Proposition 2. Let $\left\{s^{(k)}: k=1,2,3, \cdots\right\}$ be the set of all sequences in ϕ each of whose non-zero terms \pm. Let $E=\left\{s^{(k)}: k=1,2,3, \cdots\right\}$ then E is a determining
set for the space χ_{M}.
Proof: Step 1: Recall that χ_{M} is a metric space with the metric

$$
d(x, y)=\inf \left\{\rho>0: \sup _{k}\left(M\left(\frac{\left(k!\left|x_{k}-y_{k}\right|\right)^{1 / k}}{\rho}\right)\right) \leq 1\right\}
$$

Let A be the absolutely convex hull of E. Let $x \in A$. Then $x=\sum_{k=1}^{m} t_{k} s^{(k)}$ with

$$
\begin{equation*}
\sum_{k=1}^{m}\left|t_{k}\right| \leq 1 \text { and }^{(k)} \in E \tag{6}
\end{equation*}
$$

Then $d(x, 0) \leq\left|t_{1}\right| d\left(s^{(1)}, 0\right)+\left|t_{2}\right| d\left(s^{(2)}, 0\right)+\cdots+\left|t_{1}\right| d\left(s^{(m)}, 0\right)$. But $d\left(s^{(k)}, 0\right)=$ 1 for $k=1,2,3, \cdots, m$. Hence $d(x, 0) \leq \sum_{k=1}^{m}\left|t_{k}\right| \leq 1$ by using (6). Also $x \in \phi$. Hence $x \in D$. Thus we have

$$
\begin{equation*}
A \subset D \tag{7}
\end{equation*}
$$

step 2:Let $x \in D$.
$\Rightarrow x \in \phi$ and $d(x, 0) \leq 1$.
$\Rightarrow x=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ and

$$
\begin{equation*}
\sup \left\{M\left(\frac{\left(1!\left|x_{1}\right|\right)^{1 / 1}}{\rho}\right), M\left(\frac{\left(2!\left|x_{2}\right|\right)^{1 / 2}}{\rho}\right), \cdots, M\left(\frac{\left(m!\left|x_{m}\right|\right)^{1 / m}}{\rho}\right),\right\} \leq 1 \tag{8}
\end{equation*}
$$

Case 1. Suppose that

$$
M\left(\frac{\left(1!\left|x_{1}\right|\right)^{1 / 1}}{\rho}\right) \geq M\left(\frac{\left(2!\left|x_{2}\right|\right)^{1 / 1}}{\rho}\right) \geq \cdots \geq M\left(\frac{\left(m!\left|x_{m}\right|\right)^{1 / m}}{\rho}\right)
$$

Let $\epsilon_{i}=\operatorname{sgn}\left(M\left(\frac{\left(i!x_{i}\right)}{\rho}\right)\right)=\frac{M\left(\frac{\left(i!\left|x_{i}\right|\right)}{\rho}\right)}{\left(M\left(\frac{\left(i!x_{i}\right)}{\rho}\right)\right)}$ for $i=1,2,3, \cdots, m$.
Take $S_{j}=\left\{\epsilon_{2}, \epsilon_{2}, \cdots, \epsilon_{j}, 0,0, \cdots\right\}$ for $j=1,2,3, \cdots, m$.
Then $S_{j} \in E$ for $j=1,2,3, \cdots, m$. Also
$x=\left(M\left(\frac{\left(1!\left|x_{1}\right|\right)^{1 / 1}}{\rho}\right)-M\left(\frac{\left(2!\left|x_{2}\right|\right)^{1 / 2}}{\rho}\right)\right) s_{1}+\left(M\left(\frac{\left(2!\left|x_{2}\right|\right)^{1 / 2}}{\rho}\right)-M\left(\frac{\left(3!\left|x_{3}\right|\right)^{1 / 3}}{\rho}\right)\right) s_{2}+$
$\cdots+\left(M\left(\frac{\left(m!\left|x_{m}\right|\right)^{1 / m}}{\rho}\right)-M\left(\frac{\left((m+1)!\left|x_{m+1}\right|\right)^{1 / m+1}}{\rho}\right)\right) s_{m}=t_{1} s_{1}+t_{2} s_{2}+\cdots+t_{m} s_{m}$.
So that
$t_{1}+t_{2}+\cdots+t_{m}=M\left(\frac{\left(1!\left|x_{1}\right|\right)^{1 / 1}}{\rho}\right)-M\left(\frac{\left((m+1)!\left|x_{m+1}\right|\right)^{1 / m+1}}{\rho}\right)=M\left(\frac{\left(1!\left|x_{1}\right|\right)^{1 / 1}}{\rho}\right)$ because $M\left(\frac{\left((m+1)!\left|x_{m+1}\right|\right)^{1 / m+1}}{\rho}\right)=.0$
Therefore $t_{1}+t_{2}+\cdots+t_{m} \leq 1$ by using (8). Hence $x \in A$. Thus we have $D \subset A$.
Case (ii): Let y be x and let $M\left(\frac{\left(1!\left|y_{1}\right|\right)}{\rho}\right) \geq M\left(\frac{\left(2!\left|y_{2}\right|\right)}{\rho}\right) \geq \cdots \geq M\left(\frac{\left(m!\left|y_{m}\right|\right)}{\rho}\right)$
Express y as a member of A as in case(i). Since E is invariant under permutation of the terms of its members, so is A. Hence $x \in A$. Thus $D \subset A$. Therefore in both cases

$$
\begin{equation*}
D \subset A \tag{9}
\end{equation*}
$$

From (7) and (9) $A=D$. Consequently E is a determining set for χ_{M}. This completes the proof.
Proposition 3. An infinite matrix $A=\left(a_{n k}\right)$ is in the class

$$
\begin{align*}
A & \in\left(\chi_{M}:\left(c_{0}\right)_{\pi}\right) \Leftrightarrow \lim _{n \rightarrow \infty}\left(\frac{a_{n k}}{\pi_{n}}\right)=0 \tag{10}\\
& \Leftrightarrow \sup _{n k}\left|\frac{a_{n 1}+\cdots+a_{n k}}{\pi_{n}}\right|<\infty \tag{11}
\end{align*}
$$

Proof:In Lemma 3. Take $X=\chi_{M}$ has AK property take $Y=\left(c_{0}\right)_{\pi}$ be an FKspace. Further more χ_{M} is a determining set E (as in given Proposition 4.2). Also $A[E]=A\left(s^{(k)}\right)=\left\{\left(a_{n 1}+a_{n 2}+\cdots\right)\right\}$. Again by Lemma 3. $A \in\left(\chi_{M}:\left(c_{0}\right)_{\pi}\right)$ if and only if (i) The columns of A belong to $\left(c_{0}\right)_{\pi}$ and (ii) $A\left(s^{(k)}\right)$ is a bounded subset $\left(c_{0}\right)_{\pi}$. But the condition
(i) $\Leftrightarrow\left\{\frac{a_{n k}}{\pi_{n}}: n=1,2, \cdots\right\}$ is exists for all k.
(ii) $\Leftrightarrow \sup _{n, k}\left|\frac{a_{n 1}+\cdots+a_{n k}}{\pi_{n}}\right|<\infty$.

Hence we conclude that $A \in\left(\chi_{M}:\left(c_{0}\right)_{\pi}\right) \Leftrightarrow$ conditions (10) and (11) are satisfied. This is completes the proof.
Omitting the proofs, we formulate the following results:
Proposition 4. An infinite matrix $A=\left(a_{n k}\right)$ is in the class

$$
\begin{align*}
A \in\left(\chi_{M}: c_{\pi}\right) & \Leftrightarrow \lim _{n \rightarrow \infty}\left(\frac{a_{n k}}{\pi_{n}}\right) \operatorname{exists}(k=1,2,3, \ldots) \tag{12}\\
& \Leftrightarrow \sup _{n k}\left|\frac{a_{n 1}+\cdots+a_{n k}}{\pi_{n}}\right|<\infty \tag{13}
\end{align*}
$$

Proposition 5. An infinite matrix $A=\left(a_{n k}\right)$ is in the class

$$
\begin{gather*}
A \in\left(\chi_{M}: \chi_{M}\right) \Leftrightarrow \sup _{n k}\left(M\left(\frac{\left(n!\left|a_{n 1}+\cdots+a_{n k}\right|^{1 / n}\right)}{\rho}\right)\right)<\infty . \tag{14}\\
\Leftrightarrow \lim _{n \rightarrow \infty}\left(M\left(\frac{\left(n!\left|a_{n k}\right|\right)^{1 / n}}{\rho}\right)\right)=0, \text { for } \quad k=1,2,3, \ldots \tag{15}\\
\Leftrightarrow d\left(a_{n 1}, a_{n 2}, \cdots, a_{n k}\right) \text { is bounded } \tag{16}
\end{gather*}
$$

for each metric d on χ_{M} and for all n, k.
Proposition 6. An infinite matrix $A=\left(a_{n k}\right)$ is in the class

$$
\begin{align*}
A \in\left(\chi_{M}: \ell_{\pi}\right) & \Leftrightarrow \sum_{n=1}^{\infty}\left|a_{n k}\right| \text { converges }(k=1,2,3, \ldots) \tag{17}\\
& \Leftrightarrow \sup _{n k} \sum_{n=1}^{\infty}\left|\frac{a_{n k}}{\pi_{n}}\right|<\infty \tag{18}
\end{align*}
$$

Propositio n 7. An infinite matrix $A=\left(a_{n k}\right)$ is in the class

$$
\begin{equation*}
A \in\left(\chi_{M}: \ell_{s}\right) \Leftrightarrow \sup _{k} \sum_{n=1}^{\infty}\left|a_{n k}\right|<\infty \tag{19}
\end{equation*}
$$

Proposition 8. An infinite matrix $A=\left(a_{n k}\right)$ is in the class

$$
\begin{gather*}
A \in\left(\chi_{M}: \Lambda_{\pi}\right) \Leftrightarrow \sup _{n k}\left(\left|\sum_{\gamma=1}^{k} \frac{a_{n \gamma}}{\pi_{n}}\right|^{1 / n}\right)<\infty \tag{20}\\
\Leftrightarrow d\left(a_{n 1}, a_{n 2}, \cdots a_{n k}\right) \text { is bounded } \tag{21}
\end{gather*}
$$

$$
\text { for each metric } d \text { on } \Lambda_{\pi} \text { and for all } n, k \text {. }
$$

Proposition 9. An infinite matrix $A=\left(a_{n k}\right)$ is in the class

$$
\begin{align*}
& A \in\left(\chi_{M}: h_{\pi}\right) \Leftrightarrow\left\{\frac{a_{n k}}{\pi_{n}}: n=1,2,3, \cdots\right\} \text { is exists for each } k \tag{22}\\
& \Leftrightarrow \sup _{k} \sum_{n=1}^{\infty}\left|\frac{a_{n 1}+a_{n 2}+\cdots+a_{n k}}{\pi_{n}}-\frac{a_{n+1,1}+a_{n+2,2}+\cdots+a_{n+1, k}}{\pi_{n+1}}\right|<\infty \tag{23}
\end{align*}
$$

References

[1] A.K.Snyder and A.Wilansky, Inclusion Theorems and semi conservative FKspaces, Rocky Mountain Journal of Math., 2(1972), 595-603.
[2] K.Chandrasekhara Rao and T.G.Srinivasalu, The Hahn sequence space-II, Journal of Faculty of Education, 1(2)(1996), 43-45.
[3] A.K.Snyder, Consistency theory in semi conservative spaces, Studia Math., 5(1982), 1-13.
[4] W.Orlicz, Über Raume (L^{M}) Bull. Int. Acad. Polon. Sci. A, (1936), 93-107.
[5] J.Lindenstrauss and L.Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
[6] S.D.Parashar and B.Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(4)(1994), 419-428.
[7] M.Mursaleen,M.A.Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math., Vol. XXXII (1999), 145-150.
[8] C.Bektas and Y.Altin, The sequence space $\ell_{M}(p, q, s)$ on seminormed spaces, Indian J. Pure Appl. Math., 34(4) (2003), 529-534.
[9] B.C.Tripathy,M.Etand Y.Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Analysis and Applications, 1(3)(2003), 175-192.
[10] K.Chandrasekhara Rao and N.Subramanian, The Orlicz space of entire sequences, Int. J. Math. Math. Sci., 68(2004), 3755-3764.
[11] M.A.Krasnoselskii and Y.B.Rutickii, Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
[12] W.H.Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
[13] I.J.Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1) (1986), 161-166.
[14] H.I.Brown, The summability field of a perfect $\ell-\ell$ method of summation, J. Anal. Math., 20(1967), 281-287.
[15] A.Wilansky, Summability through Functional Analysis, North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam, Vol.85(1984).
[16] P.K.Kamthan and M.Gupta, Sequence spaces and series. Lecture Notes in Pure and Applied Mathematics, Marcel Dekker Inc. New York, 65(1981).
[17] K.Chandrasekhara Rao and N.Subramanian, Semi analytic spaces, Science Letters, 26(2003), 146-149.
[18] Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
[19] P.K.Kamthan, Bases in a certain class of Frechet space, Tamkang J. Math., 1976, 41-49.
[20] S.Sridhar, A matrix transformation between some sequence spaces, Acta Ciencia Indica, 5 (1979), 194-197.
[21] S.M.Sirajiudeen, Matrix transformations of $c_{0}(p), \ell_{\infty}(p), \ell^{p}$ and ℓ into χ, Indian J. Pure Appl. Math., 12(9) (1981), 1106-1113.
[22] K.Chandrasekhara Rao and N.Subramanian, The semi Orlicz space of analytic sequences, Thai Journal of Mathematics, Vol. 2 (No.1), (2004), 197-201.
[23] N.Subramanian, B.C.Tripathy and C.Murugesan, The semi Orlicz space of $c s \cap d_{1}$, Communications of the Korean Mathematical Society, in press.
[24] E.Jurimae, Properties of domains of matrix mappings on rate-spaces and spaces with speed, Acta et Commentationes Universitatis Tartuensis de Mathematica, No. 970, (1994), 53-64.
N.Subramanian

Department of Mathematics,SASTRA University, Tanjore-613 402, India.
email:nsmaths@yahoo.com
S.Krishnamoorthy

Department of Mathematics, Govenment Arts College(Autonomus), Kumbakonam-612 001, India.
email:drsk_01@yahoo.com
S. Balasubramanian

Department of Mathematics, Govenment Arts College(Autonomus), Kumbakonam-612 001, India.
email:sbalasubramanian2009@yahoo.com

