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NEIGHBORHOOD PROPERTIES OF MULTIVALENT FUNCTIONS
DEFINED USING AN INTEGRAL OPERATOR

Hesam Mahzoon

Abstract. In this paper, we introduce the generalized integral operator Jp(σ, λ)
and using this generalized integral operator, the new subclasses Hpn,m(b, σ, λ),
Lpn,m(b, σ, λ;µ), Hp,αn,m(b, σ, λ) and Lp,αn,m(b, σ, λ;µ) of the class of multivalent func-
tions denoted by Tp(n) are defined. Further for functions belonging to these classes,
certain properties of neighborhoods of functions of complex order are studied.

2000 Mathematics Subject Classification: 30C45.

1.INTRODUCTION

Let Ap(n) be the class of normalized functions f of the form

f(z) = zp +
∞∑

k=n+p

akz
k, (n, p ∈ N), (1)

which are analytic and p -valent in the open unit disc U = {z ∈ C : |z| < 1}.
Let Tp(n) be the subclass of Ap(n) consisting functions f of the form

f(z) = zp −
∞∑

k=n+p

akz
k, (ak ≥ 0, n, p ∈ N), (2)

which are p - valent in U .

Definition 1 Let σ, λ ∈ R, σ > 0, λ > −p, p ∈ N and f ∈ Ap(n), the integral
operator Jp(σ, λ) is defined as

Jp(σ, λ)f(z) =
(λ+ p)σ

zλΓ(σ)

∫ z

0
tλ−1

(
log

z

t

)σ−1
f(t) dt = zp +

∞∑
k=n+p

(
λ+ p

λ+ k

)σ
akz

k,

(3)
where Γ denotes the Gamma function.
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Remark 1 We observe that the operator J1(σ, λ) ≡ P σλ introduced by Gao, Yuan
and Srivastava [1], J1(σ, 1) ≡ Iσ studied by Miller and Mocanu [4] and also J1(σ, 1) ≡
P σ introduced by Jung, Kim and Srivastava [3].

For any function f ∈ Tp(n) and δ ≥ 0, the (n, δ) - neighborhood of f is defined as,

Nn,δ(f) =

g ∈ Tp(n) : g(z) = zp −
∞∑

k=n+p

bkz
k and

∞∑
k=n+p

k|ak − bk| ≤ δ

 . (4)

For the function h(z) = zp, (p ∈ N) we have,

Nn,δ(h) =

g ∈ Tp(n) : g(z) = zp −
∞∑

k=n+p

bkz
k and

∞∑
k=n+p

k|bk| ≤ δ

 . (5)

The concept of neighborhoods was first introduced by Goodman [2] and then gen-
eralized by Ruscheweyh [8].

Definition 2 A function f ∈ Tp(n) is said to be in the class Hpn,m(b, σ, λ) if∣∣∣∣∣1b
(
z (Jp(σ, λ)f(z))(m+1)

(Jp(σ, λ)f(z))(m)
− (p−m)

)∣∣∣∣∣ < 1, (6)

where, p ∈ N, m ∈ N0, λ > −p, σ > 0, p > m, b ∈ C \ {0} and z ∈ U .

Definition 3 A function f ∈ Tp(n) is said to be in the class Lpn,m(b, σ, λ;µ) if∣∣∣∣∣1b
[
p(1− µ)

(
Jp(σ, λ)f(z)

z

)(m)

+ µ (Jp(σ, λ)f(z))(m+1) − (p−m)

]∣∣∣∣∣ < p−m, (7)

where, p ∈ N, m ∈ N0, λ > −p, σ > 0, µ ≥ 0, p > m, b ∈ C \ {0} and z ∈ U .

2.Coefficient bounds

In this section, we obtain the coefficient inequalities for functions belonging to
the classes Hpn,m(b, σ, λ) and Lpn,m(b, σ, λ;µ).

Theorem 2.1Let f ∈ Tp(n). Then, f ∈ Hpn,m(b, σ, λ) if and only if

∞∑
k=n+p

(
λ+ p

λ+ k

)σ ( k
m

)
(k + |b| − p) ak ≤ |b|

(
p

m

)
. (8)
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Proof. Let f ∈ Hpn,m(b, σ, λ). Then, by (6) and (7) we can write,

<



∞∑
k=n+p

(
λ+ p

λ+ k

)σ ( k
m

)
(p− k)akz

k−p

(
p
m

)
−

∞∑
k=n+p

(
λ+ p

λ+ k

)σ ( k
m

)
akz

k−p


> −|b|, (z ∈ U). (9)

Taking |z| = r, (0 ≤ r < 1) in ( 9), we see that the expression in the denominator on
the Left Hand Side of ( 9), is positive for r = 0 and also for all r, 0 ≤ r < 1. Hence,
by letting r 7→ 1− through real values, expression ( 9) yields the desired condition
( 8). Conversely, by applying the hypothesis ( 8) and letting |z| = 1,we obtain,

∣∣∣∣∣z (Jp(σ, λ)f(z))(m+1)

(Jp(σ, λ)f(z))(m)
− (p−m)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

∞∑
k=n+p

(
λ+ p

λ+ k

)σ ( k
m

)
(p− k)akz

k−m

(
p
m

)
zp−m −

∞∑
k=n+p

(
λ+ p

λ+ k

)σ ( k
m

)
akz

k−m

∣∣∣∣∣∣∣∣∣∣∣

≤

|b|

( p
m

)
−

∞∑
k=n+p

(
λ+ p

λ+ k

)σ ( k
m

)
ak


(
p
m

)
−

∞∑
k=n+p

(
λ+ p

λ+ k

)σ ( k
m

)
ak

= |b|.

Hence, by the maximum modulus theorem, we have f ∈ Hpn,m(b, σ, λ). Thus the
proof is complete. On similar lines, we can prove the following Theorem.

Theorem 2.2A function f ∈ Lpn,m(b, σ, λ;µ) if and only if

∞∑
k=n+p

(
λ+ p

λ+ k

)σ (k − 1

m

)
[µ(k − 1) + 1] ak ≤ (p−m)

[
|b| − 1

m!
+

(
p

m

)]
. (10)

3.Inclusion relationships involving (n, δ) - neighborhoods

In this section, we study inclusion relationship for the functions belonging to the
classes Hpn,m(b, σ, λ) and Lpn,m(b, σ, λ;µ).

287



H. Mahzoon - Neighborhood properties of multivalent functions defined using an...

Theorem 3.1If

δ =
(n+ p)|b|

(
p
m

)
(n+ |b|)

(
λ+ p

λ+ n+ p

)σ (
n+p
m

) , (p > |b|), (11)

then Hpn,m(b, σ, λ) ⊂ Nn,δ(h).

Proof. Let f ∈ Hpn,m(b, σ, λ). By Theorem 2.1 we have,

(n+ |b|)
(

λ+ p

λ+ n+ p

)σ (n+ p

m

) ∞∑
k=n+p

ak ≤ |b|
(
p

m

)
which implies,

∞∑
k=n+p

ak ≤
|b|
(
p
m

)
(n+ |b|)

(
λ+ p

λ+ n+ p

)σ (
n+p
m

) . (12)

Using ( 8) and( 12), we have,(
λ+ p

λ+ n+ p

)σ (
n+p
m

) ∞∑
k=n+p

kak ≤ |b|
(
p
m

)
+ (p− |b|)

(
λ+ p

λ+ n+ p

)σ (
n+p
m

) ∞∑
k=n+p

ak

≤ |b|
(
p

m

)
+ (p− |b|)

(
λ+ p

λ+ n+ p

)σ (n+ p

m

) |b|
(
p
m

)
(n+ |b|)

(
λ+ p

λ+ n+ p

)σ (
n+p
m

)
= |b|

(
p

m

)
n+ p

n+ |b|
.

That is,

∞∑
k=n+p

kak ≤
|b|(n+ p)

(
p
m

)
(n+ |b|)

(
λ+ p

λ+ n+ p

)σ (
n+p
m

) = δ, (p > |b|).

Thus, by the definition given by ( 7), f ∈ Nn,δ(h). This completes the proof.
Similarly, we prove the following Theorem.

Theorem 3.2If

δ =

(p−m)(n+ p)

[
|b| − 1

m!
+

(
p

m

)]
[µ(n+ p− 1) + 1]

(
λ+ p

λ+ n+ p

)σ (
n+p
m

) , (µ > 1) (13)
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then Lpn,m(b, σ, λ;µ) ⊂ Nn,δ(h).

4.Further Neighborhood Properties

Now, we determine the neighborhood properties for functions belonging to the classes
Hp,αn,m(b, σ, λ) and Lp,αn,m(b, σ, λ;µ).
For 0 ≤ α < p and z ∈ U , a function f is said to be in the class Hp,αn,m(b, σ, λ) if
there exists a function g ∈ Hpn,m(b, σ, λ) such that∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < p− α. (14)

For 0 ≤ α < p and z ∈ U , a function f is said to be in the class Lp,αn,m(b, σ, λ;µ) if
there exists a function g ∈ Lpn,m(b, σ, λ;µ) such that the inequality ( 14) holds true.

Theorem 4.1Nn,δ(g) ⊂ Hn,m. If g ∈ Hpn,m(b, σ, λ) and

α = p−
δ(n+ |b|)

(
λ+ p

λ+ n+ p

)σ (
n+p
m

)
(n+ p)

[
(n+ |b|)

(
λ+ p

λ+ n+ p

)σ (
n+p
m

)
− |b|

(
p
m

)] , (15)

α(b, σ, λ).

Proof. Let f ∈ Nn,δ(g). Then,

∞∑
k=n+p

k|ak − bk| ≤ δ, (16)

which yields the coefficient inequality,

∞∑
k=n+p

|ak − bk| ≤
δ

n+ p
, (n ∈ N). (17)

Since g ∈ Hpn,m(b, σ, λ) by ( 12), we have,

∞∑
k=n+p

bk ≤
|b|
(
p
m

)
(n+ |b|)

(
λ+ p

λ+ n+ p

)σ (
n+p
m

) (18)

so that,
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∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ <

∞∑
k=n+p

|ak − bk|

1−
∞∑

k=n+p

bk

≤ δ

n+ p

(n+ |b|)
(

λ+ p

λ+ n+ p

)σ (
n+p
m

)
[
(n+ |b|)

(
λ+ p

λ+ n+ p

)σ (
n+p
m

)
− |b|

(
p
m

)]
= p− α.

Thus, by definition, f ∈ Hp,αn,m(b, σ, λ) for α given by ( 15). Thus the proof is com-
plete.
On similar lines, we prove the following theorem.

Theorem 4.2If g ∈ Lpn,m(b, σ, λ;µ) and

α = p−
δ[µ(n+ p− 1) + 1]

(
λ+ p

λ+ n+ p

)σ (
n+p−1
m

)
(n+ p)

[
{µ(n+ p− 1) + 1}

(
λ+ p

λ+ n+ p

)σ (
n+p−1
m

)
− (p−m)

(
|b| − 1

m!
+

(
p

m

))] ,
(19)

then Nn,δ(g) ⊂ Lp,αn,m(b, σ, λ;µ).
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