ON A NEW STRONG DIFFERENTIAL SUBORDINATION

Georgia Irina Oros

ABSTRACT. In this paper we define some new classes of analytic functions on $U \times \overline{U}$, which have as coefficients holomorphic functions in \overline{U} . Using those new classes, we give a new approach to the notion of strong subordination and we study certain strong differential subordinations.

2000 Mathematics Subject Classification: 30C80, 30C45, 30A20. Keywords: analytic function, differential subordination, strong differential subordination, univalent function, dominant, best dominant.

INTRODUCTIONAND PRELIMINARIES

The concept of differential subordination was introduced in [2], [3] and developed in [4], by S.S. Miller and P.T. Mocanu. The concept of differential superordination was introduced in [5] as a dual problem of the differential subordination, by S.S. Miller and P.T. Mocanu. The concept of strong differential subordination was introduced in [1] by J.A. Antonino and S. Romaguera, and developed in [6], [7].

Denote by $\mathcal{H}(U \times \overline{U})$ the class of analytic functions in $U \times \overline{U}$,

$$U = \{ z \in \mathbb{C} : |z| < 1 \}, \ \overline{U} = \{ z \in \mathbb{C} : |z| \le 1 \}, \ \partial U = \{ z \in \mathbb{C} : |z| = 1 \}.$$

For $a \in \mathbb{C}$ and n a positive integer, we denote by

$$\mathcal{H}\xi[a,n] = \{f(z,\xi) \in (U \times \overline{U}) : f(z,\xi) = a + a_n(\xi)z^n + a_{n+1}(\xi)z^{n+1} + \dots\},\$$

with $z \in U$, $\xi \in \overline{U}$, $a_k(\xi)$ holomorphic functions in \overline{U} , $k \ge n$. Let

$$A\xi_n = \{f(z,\xi) \in \mathcal{H}(U \times \overline{U}) : f(z,\xi) = z + a_{n+1}(\xi)z^{n+1} + \ldots\},\$$

with $z \in U$, $\xi \in \overline{U}$, $a_k(\xi)$ holomorphic functions in \overline{U} , $k \ge n+1$, and $A\xi_1 = A\xi$,

$$\mathcal{H}\xi_u(U) = \{ f(z,\xi) \in \mathcal{H}\xi[a,n] : f(z,\xi) \text{ is univalent in } U \text{ for all } \xi \in \overline{U} \},\$$

 $S\xi = \{f(z,\xi) \in A\xi_n : f(z,\xi) \text{ univalent in } U \text{ for all } \xi \in \overline{U}\}$

denote the class of univalent functions in $\mathcal{H}(U \times \overline{U})$,

$$S^*\xi = \{ f(z,\xi) \in A\xi : \text{ Re } \frac{z\frac{\partial f}{\partial z}(z,\xi)}{f(z,\xi)} > 0, \quad z \in U \text{ for all } \xi \in \overline{U} \}$$

denote the class of normalized starlike functions in $\mathcal{H}(U \times \overline{U})$,

$$K\xi = \{f(z,\xi) \in A\xi : \text{ Re } \left(\frac{z\frac{\partial^2 f}{\partial z^2}(z,\xi)}{\frac{\partial f}{\partial z}(z,\xi)} + 1\right) \ge 0, \quad z \in U \text{ for all } \xi \in \overline{U}\}$$

denote the class of normalized convex functions in $\mathcal{H}(U \times \overline{U})$. Let $A(p)\xi$ denote the subclass of the functions $f(z,\xi) \in \mathcal{H}(U \times \overline{U})$ of the form

$$f(z,\xi) = z^p + \sum_{k=p+1}^{\infty} a_k(\xi) z^k, \quad p \in N, \ z \in U \text{ for all } \xi \in \overline{U}$$

and set $A(1)\xi = A\xi$.

In order to prove our main results we use the following new definitions, according to [1] and lemma according to [4].

Definition No. 1. Let $H(z,\xi)$, $f(z,\xi)$ be analytic in $U \times \overline{U}$. The function $f(z,\xi)$ is said to be strongly subordinate to $H(z,\xi)$, or $H(z,\xi)$ is said to be strongly superordinate to $f(z,\xi)$, if there exists a function w analytic in U, with w(0) = 0 and |w(z)| < 1 such that $f(z,\xi) = H(w(z),\xi)$, for all $\xi \in \overline{U}$. In such a case we write $f(z,\xi) \prec H(z,\xi)$, $z \in U$, $\xi \in \overline{U}$.

Remark No. 1. (i) If $H(z,\xi)$ is analytic in $U \times \overline{U}$ and univalent in U, for all $\xi \in \overline{U}$, Definition 1 is equivalent to

$$H(0,\xi) = f(0,\xi)$$
 for all $\xi \in \overline{U}$ and $f(U \times \overline{U}) \subset \mathcal{H}(U \times \overline{U})$.

(ii) If $H(z,\xi) \equiv H(z)$ and $f(z,\xi) \equiv f(z)$ then the strong subordination becomes the usual notion of subordination.

Definition No. 2. Let $\Psi : \mathbb{C}^3 \times U \times \overline{U} \to \mathbb{C}$ and let $h(z,\xi)$ be univalent in U for all $\xi \in \overline{U}$. If $p(z,\xi)$ is analytic in $U \times \overline{U}$ and satisfies the (second-order) strong differential subordination

$$\Psi\left(p(z,\xi), z\frac{\partial p(z,\xi)}{\partial z}, z^2\frac{\partial^2 p(z,\xi)}{\partial z^2}; z,\xi\right) \prec \prec h(z,\xi), \quad z \in U, \quad \xi \in \overline{U},$$
(1)

then $p(z,\xi)$ is called a solution of the strong differential subordination. The univalent function $q(z,\xi)$ is called a dominant of the solutions of the strong differential subordination, or simply a dominant, if $p(z,\xi) \prec \prec q(z,\xi)$ for all $p(z,\xi)$ satisfying

(1). A dominant $\tilde{q}(z,\xi)$ that satisfies $\tilde{q}(z,\xi) \prec \prec q(z,\xi)$, for all dominants $q(z,\xi)$ of (1) is said to be the best dominant of (1).

Note that the best dominant is unique up to a rotation of $U \times \overline{U}$.

Definition No. 3. We denote by Q_{ξ} the set of functions $q(\cdot, \xi)$ that are analytic and injective, as function of z on $\overline{U} \setminus E(q(z,\xi))$ where

$$E(q(z,\xi))=\{\zeta\in\partial U:\ \lim_{z\to\zeta}q(z,\xi)=\infty\}$$

and are such that $q'(\zeta,\xi) \neq 0$ for $\zeta \in \partial U \setminus E(q(z,\xi)), \xi \in \overline{U}$.

The subclass of Q for which $q(0,\xi) = a$ is denoted by Q(a).

We mention that all derivatives of first order or second-order that appear are derived in relation to the variable z.

Lemma No. 1. (S.S. Miller, P.T. Mocanu, [2], [4], [5, Lemma 9.2.3]) Let $q(\cdot,\xi) \in Q_{\xi}$, with $q(0,\xi) = a$, and

$$p(z,\xi) = a + a_n(\xi)z^n + a_{n+1}(\xi)z^{n+1} + \dots$$

be analytic in $U \times \overline{U}$ with $p(z,\xi) \not\equiv a$ and $n \geq 1$. If $p(\cdot,\xi)$ is not subordinated to $q(\cdot,\xi)$, then there exist points $z_0 = r_0 e^{i\theta_0} \in U$ and $\zeta_0 \in \partial U \setminus E(q(z,\xi))$ and $m \geq n \geq 1$ for which $p(U_{r_0} \times \overline{U}_{r_0}) \subset q(U \times \overline{U})$.

(i)
$$p(z_0,\xi) = q(z_0,\xi)$$

(ii) $z_0 p'(z_0,\xi) = m\zeta_0 q'(\zeta_0,\xi)$ and
(iii) Re $\frac{z_0 p''(z_0,\xi)}{p'(z_0,\xi)} + 1 \ge m \left[\text{Re } \frac{\zeta_0 q''(\zeta_0,\xi)}{q'(\zeta_0,\xi)} + 1 \right].$
Remark The proof is similar to the proof in [4].

Remark. The proof is similar to the proof in [4].

Definition No. 4. [6] Let Ω_{ξ} be a set in \mathbb{C} , $q(\cdot,\xi) \in Q_{\xi}$ and n be a positive integer. The class of admissible functions $\Psi_n[\Omega_{\xi}, q(\cdot,\xi)]$ consists of those functions $\psi: \mathbb{C}^3 \times U \times \overline{U} \to \mathbb{C}$ that satisfy the admissibility condition:

$$(A) \qquad \qquad \psi(r,s,t;z,\xi) \not\in \Omega_{\xi}$$

whenever

$$r = q(\zeta, \xi), \quad s = m\zeta q'(\zeta, \xi),$$

Re $\frac{t}{s} + 1 \ge m$ Re $\left[\frac{\zeta q''(\zeta, \xi)}{q'(\zeta, \xi)} + 1\right],$
 $z \in U, \ \zeta \in \partial U \setminus E(q), \ \xi \in \overline{U} \text{ and } m \ge n.$

We write $\Psi_1[\Omega_{\xi}, q(\cdot, \xi)]$ as $\Psi[\Omega_{\xi}, q(\cdot, \xi)]$.

In the special case when Ω_{ξ} is a simply connected domain, $\Omega_{\xi} \neq \mathbb{C}$, and $h(\cdot,\xi)$ is a conformal mapping of $U \times \overline{U}$ onto Ω_{ξ} we denote this class by $\Psi_n[h(\cdot,\xi), q(\cdot,\xi)]$.

If $\psi : \mathbb{C}^2 \times U \times \overline{U} \to \mathbb{C}$, then the admissibility condition (A) reduces to

$$(A')\qquad\qquad\qquad\psi(r,s;z.\xi)\not\in\Omega_{\xi},$$

whenever

$$r = q(\zeta, \xi), \ s = \zeta q'(\zeta, \xi), \quad z \in U, \ \zeta \in \partial U \setminus E(q(z, \xi)), \ \xi \in \overline{U}, \ \text{and} \ m \ge n.$$

If $\psi : \mathbb{C} \times U \times \overline{U} \to \mathbb{C}$, then the admissibility condition (A) reduces to

$$(A'') \qquad \qquad \psi(r;z,\xi) \notin \Omega_{\xi}$$

whenever

$$r = q(\zeta, \xi), \quad z \in U, \quad \xi \in \overline{U}, \quad \zeta \in \partial U \setminus E(q(z, \xi))$$

2. Main results

Theorem No. 1. Let $\psi \in \Psi_n[\Omega_{\xi}, q(\cdot, \xi)]$ with $q(0, \xi) = a$. If $p(\cdot, \xi) \in \xi[a, n]$ satisfies

(1)
$$\psi(p(z,\xi), zp'(z,\xi), z^2p''(z,\xi); z,\xi) \in \Omega_{\xi}, \quad z \in U, \ \xi \in \overline{U}$$

then

$$p(z,\xi) \prec \prec q(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

Proof. Assume $p(z,\xi) \not\prec \prec q(z,\xi)$. By Lemma 1 there exist points $z_0 = r_0 e^{i\theta_0} \in U$ and $\zeta_0 \in \partial U \setminus E(q(z,\xi))$, and $m \ge n \ge 1$ that satisfy (i)-(iii) of Lemma 1.

Using these conditions with $r = p(z_0,\xi)$, $s = z_0 p'(z_0,\xi)$, $t = z_0^2 p''(z_0,\xi)$ and $z = z_0$ in Definition 3 we obtain

$$\psi(p(z_0,\xi), z_0 p'(z_0,\xi), z_0^2 p''(z_0,\xi); z_0,\xi) \notin \Omega_{\xi}$$

Since this contradicts (1) we must have $p(z,\xi) \prec \prec q(z,\xi), z \in U, \xi \in \overline{U}$. **Remark No. 1.** Upon examining the proof of Theorem 1 it is easy to see that the theorem also holds if condition (1) is replaced by

(1')
$$\psi(p(w(z),\xi), w(z)p'(w(z),\xi), w^2(z)p''(w(z),\xi); w(z),\xi) \in \Omega_{\xi},$$

 $z \in U, \xi \in \overline{U}$, where w(z) is any function mapping U into U.

On checking the definitions of Q_{ξ} and $\Psi_n[\Omega_{\xi}, q(\cdot, \xi)]$ we see that the hypothesis of Theorem 1 requires that $q(\cdot, \xi)$ behave very nicely on the boundary of U. If this is not true or if the behavior of $q(\cdot, \xi)$ is not known, it may still be possible to prove that $p(z,\xi) \prec \prec q(z,\xi), z \in U, \xi \in \overline{U}$ by the following limiting procedure.

Theorem No. 2. Let $\Omega_{\xi} \subset \mathbb{C}$ and let $q(\cdot, \xi) \in S\xi$, for all $\xi \in \overline{U}$, with $q(0,\xi) = a$. Let $\psi \in \Psi_n[\Omega_{\xi}, q_{\rho}(\cdot, \xi)]$ for some $\rho \in (0,1)$, where $q_{\rho}(z,\xi) = q(\rho z,\xi)$. If $p(\cdot,\xi) \in \xi[a,n]$ and

$$\psi(p(z,\xi), zp'(z,\xi), z^2p''(z,\xi); z,\xi) \in \Omega_{\mathcal{E}}$$

then

$$p(z,\xi) \prec \prec q(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

Proof. The function $q_{\rho}(\cdot, \xi)$ is univalent in U for all $\xi \in \overline{U}$ and therefore $E(q_{\rho}(z,\xi))$ is empty and $q_{\rho}(\cdot,\xi) \in Q_{\xi}$. The class $\Psi_n[\Omega_{\xi}, q_{\rho}(\cdot,\xi)]$ is an admissible class and from Theorem 1 we obtain $p(z,\xi) \prec \prec q_{\rho}(z,\xi)$. Since $q_{\rho}(z,\xi) \prec \prec q(z,\xi)$ we deduce

$$p(z,\xi) \prec \prec q(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

We next consider the special situation when $\Omega_{\xi} \neq \mathbb{C}$ is a simply connected domain. In this case $\Omega_{\xi} = h(U \times \overline{U})$ where $h(\cdot, \xi)$ is a conformal mapping of $U \times \overline{U}$ onto Ω_{ξ} and the class $\Psi_n[h(U \times \overline{U}), q(\cdot, \xi)]$ is written as $\Psi_n[h(\cdot, \xi), q(\cdot, \xi)]$.

The following result is an immediate consequence of Theorem 1.

Corollary No. 1. Let $\psi \in \Psi_n[h(\cdot,\xi), q(\cdot,\xi)]$ with $q(0,\xi) = a$.

If $p(.,\xi) \in \xi[a,n]$, $\psi(p(z,\xi), zp'(z,\xi), z^2p''(z,\xi); z,\xi)$ is analytic in $U \times \overline{U}$ and

$$\psi(p(z,\xi), zp'(z,\xi), z^2p''(z,\xi); z,\xi) \prec \prec h(z,\xi),$$

then

$$p(z,\xi) \prec \prec q(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

This result can be extended to those cases in which the behavior of $q(\cdot, \xi)$ on the boundary of U is unknown by the following theorem.

Theorem No. 3. Let $h(\cdot,\xi) \in S\xi$, for all $\xi \in \overline{U}$ and $q(\cdot,\xi) \in S\xi$, for all $\xi \in \overline{U}$, with $q(0,\xi) = a$ and set $q_{\rho}(z,\xi) = q(\rho z,\xi)$ and $h_{\rho}(z,\xi) = h(\rho z,\xi)$. Let $\psi \in \mathbb{C}^3 \times U \times \overline{U} \to \mathbb{C}$ satisfy one of the following conditions:

(i) $\psi \in \Psi_n[h(\cdot,\xi), q_\rho(\cdot,\xi)]$, for some $\rho \in (0,1)$, or (ii) there exists $\rho_0 \in (0,1)$ such that $\psi \in \Psi_n[h_\rho(\cdot,\xi), q_\rho(\cdot,\xi)]$ for all $\rho \in (\rho_0,1)$. If $p(.,\xi) \in \xi[a,n]$, $\psi(p(z,\xi), zp'(z,\xi), z^2p''(z,\xi); z,\xi)$ is analytic in $U \times \overline{U}$ and

(3)
$$\psi(p(z,\xi),zp'(z,\xi),z^2p''(z,\xi);z,\xi) \prec \prec h(z,\xi)$$

then

$$p(z,\xi) \prec \prec q(z,\xi), \quad z \in U, \ \xi \in U.$$

Proof. Case (i). By applying Theorem 2 we obtain $p(z,\xi) \prec q_{\rho}(z,\xi)$. Since $q_{\rho}(z,\xi) \prec q_{\rho}(z,\xi)$ we deduce

$$p(z,\xi) \prec \prec q(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

Case (ii). If we let $p_{\rho}(z,\xi) = p(\rho z,\xi)$, then

$$\psi(p_{\rho}(z,\xi),zp'_{\rho}(z,\xi),z^2p''_{\rho}(z,\xi);z,\xi)$$

$$=\psi(p(\rho z,\xi),\rho z p'(\rho z,\xi),\rho^2 z^2 p''(\rho z,\xi);\rho z,\xi)\in h_\rho(U\times\overline{U}).$$

By using Theorem 2 and the comment associated with (1'), with $w(z) = \rho z$, we obtain

$$p_{\rho}(z,\xi) \prec q_{\rho}(z,\xi)$$

for $\rho \in (\rho_0, 1)$. By letting $\rho \to 1$ we obtain

$$p(z,\xi) \prec \prec q(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

The next two theorems yield best dominants of the strong differential subordination (3).

Theorem No. 4. Let $h(\cdot,\xi) \in S\xi$, for all $\xi \in \overline{U}$ and let $\psi : \mathbb{C}^3 \times U \times \overline{U} \to \mathbb{C}$. Suppose that the differential equation

(4)
$$\psi(q(z,\xi), zq'(z,\xi), z^2q''(z,\xi); z,\xi) = h(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

has a solution $q(\cdot,\xi)$, with $q(0,\xi) = a$, and one of the following conditions is satisfied:

(i) $q(\cdot,\xi) \in Q_{\xi}$ and $\psi \in \Psi[h(\cdot,\xi), q(\cdot,\xi)];$

(ii) $q(\cdot,\xi) \in S\xi$, for all $\xi \in \overline{U}$ and $\psi \in \Psi[h(\cdot,\xi), q_{\rho}(\cdot,\xi)]$, for some $\rho \in (0,1)$ or (iii) $q(\cdot,\xi) \in S\xi$, for all $\xi \in \overline{U}$ and there exists $\rho_0 \in (0,1)$ such that $\psi \in \Psi[h_{\rho}(\cdot,\xi), q_{\rho}(\cdot,\xi)]$ for all $\rho \in (\rho_0, 1)$.

If $p(\cdot,\xi) \in \xi[a,1]$ and $\psi(p(z,\xi), zp'(z,\xi), z^2p''(z,\xi); z,\xi)$ is analytic in $U \times \overline{U}$ and if $p(\cdot,\xi)$ satisfies

(5)
$$\psi(p(z,\xi), zp'(z,\xi), z^2p''(z,\xi); z,\xi) \prec \prec h(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

then $p(z,\xi) \prec q(z,\xi)$ and $q(\cdot,\xi)$ is the best dominant.

Proof. By applying Theorem 2 and Theorem 3 we deduce that $q(\cdot, \xi)$ is a dominant of (5). Since $q(\cdot, \xi)$ satisfies (4), it is a solution of (5) and therefore q will be dominated by all dominants of (5). Hence $q(\cdot, \xi)$ will be the best dominant of (5). \Box

Theorem No. 5. Let $h(\cdot,\xi) \in S\xi$, for all $\xi \in \overline{U}$ and $\psi : \mathbb{C}^3 \times U \times \overline{U} \to \mathbb{C}$. Suppose that the differential equation

(6)
$$\psi(q(z,\xi), nzq'(z,\xi), n(n-1)zq'(z,\xi) + n^2 z^{2n} q''(z,\xi); z,\xi) = h(z,\xi),$$

 $z \in U, \xi \in \overline{U}$ has a solution $q(\cdot, \xi)$, with $q(0, \xi) = a$, and one of the following conditions is satisfied:

(i) $q(\cdot,\xi) \in Q_{\xi}$ and $\psi \in \Psi_n[h(\cdot,\xi), q(\cdot,\xi)];$

(ii) $q(\cdot,\xi) \in S\xi$, for all $\xi \in \overline{U}$ and $\psi \in \Psi_n[h(\cdot,\xi), q_\rho(\cdot,\xi)]$, for some $\rho \in (0,1)$, or

(iii) $q(\cdot,\xi) \in S\xi$, for all $\xi \in \overline{U}$ and there exists $\rho_0 \in (0,1)$ such that $\psi \in \Psi_n[h_\rho(\cdot,\xi), q_\rho(\cdot,\xi)]$ for all $\rho \in (\rho_0, 1)$.

If $p(\cdot,\xi) \in \xi[a,n]$, $\psi(p(z,\xi), zp'(z,\xi), z^2p''(z,\xi); z,\xi)$ is analytic in $U \times \overline{U}$ and $p(\cdot,\xi)$ satisfies

(7)
$$\psi(p(z,\xi), zp'(z,\xi), z^2p''(z,\xi); z,\xi) \prec \prec h(z,\xi),$$

 $z \in U, \xi \in \overline{U}$, then $p(z,\xi) \prec \prec q(z,\xi), z \in U, \xi \in \overline{U}$, and $q(\cdot,\xi)$ is the best dominant.

Proof. By applying Theorem 2 and Theorem 3 we deduce that $q(\cdot,\xi)$ is a dominant of (7). If we let $p(z,\xi) = q(z^n,\xi)$, then

$$zp'(z,\xi) = nz^n q'(z^n,\xi)$$

and

$$z^{2}p''(z,\xi) = n(n-1)z^{n}q'(z^{n}) + n^{2}z^{2n}q''(z^{n},\xi).$$

Therefore from (6) we obtain

$$\psi(p(z,\xi),zp'(z,\xi),z^2p''(z,\xi);z,\xi) = h(z^n,\xi) \prec \prec h(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

Since $p(U \times \overline{U}) = q(U \times \overline{U})$, we conclude that $q(\cdot, \xi)$ is best dominant. \Box Example No. 1. Let $q(z, \xi) = 1 + \frac{\xi}{2}z$,

$$h(z,\xi) = q(z,\xi) + zq'(z,\xi) + z^2q''(z,\xi) = 1 + \xi z$$

If $\psi(p(z,\xi), zp'(z,\xi), z^2p''(z,\xi); z,\xi) = p(z,\xi) + zp'(z,\xi) + z^2p''(z,\xi)$ is analytic in $U \times \overline{U}$ and satisfies

$$p(z,\xi) + zp'(z,\xi) + z^2 p''(z,\xi) \prec \prec h(z,\xi) = 1 + \xi z$$

then

$$p(z,\xi) \prec \prec q(z,\xi) = 1 + \xi z, z \in U, \ \xi \in \overline{U}$$

and $q(\cdot,\xi)$ is the best dominant.

References

[1] J.A. Antonino and S. Romaguera, *Strong differential subordination to Briot-Bouquet differential equations*, Journal of Differential Equations, **114**(1994), 101-105.

[2] S.S. Miller, P.T., Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 298-305.

[3] S.S. Miller and P.T. Mocanu, *Differential subordinations and univalent func*tions, Michig. Math. J., **28**(1981), 157-171.

[4] S.S. Miller and P.T. Mocanu, *Differential subordinations. Theory and appli*cations, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000.

[5] S.S. Miller and P.T. Mocanu, Subordinants of differential superordinations, Complex variables, **48**(10), 2003, 815-826.

[6] Georgia Irina Oros and Gheorghe Oros, *Strong differential subordination*, Turkish Journal of Mathematics, **33**(2009), 249-257.

[7] G. I. Oros, *Briot-Bouquet strong differential subordination*, Journal Computational Analysis and Applications, vol. 14, 4(2012), 733-737.

Georgia Irina Oros

Department of Mathematics

University of Oradea

Str. Universității, No.1, 410087 Oradea, Romania

email:georgia_oros_ro@yahoo.co.uk