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and Maslina Darus.

Keywords. Differential operator, fractional calculus, convex univalent func-
tions, differential subordination.

2000 Mathematics Subject Classification: 30C45.

1. Introduction and Preliminaries

Let H be the class of functions analytic in the open uit disk U = {z : |z| < 1}
and let for n ∈ N and a ∈ C, H(a, n) be the subclass of H consisting of functions of
the form f(z) = a+ anz

n + an+1z
n+1 + · · · . Let

An = {f ∈ H, f(z) = z + an+1z
n+1 + an+2z

n+2 + · · · }

and let A1 = A.
Let S denote the class of functions in A which are univalent in the unit disk U

and normalized by the conditions f(0) = 0 and f ′(0) = 1. Suppose f and g are
analytic in U . We say that the function f is subordinate to g and write f ≺ g if
there exists a Schwarz function ω(z), analytic in U with ω(0) = 0 and |ω(z)| < 1
such that f(z) = g(ω(z)) for z ∈ U . In particular, if the function g is univalent in
U , the above subordination is equivalent to f(0) = g(0) and f(U) ⊂ g(U).

In [5], R.W. Ibrahim and Darus introduced the class A+
α and A−α which are

defined as follows:
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The class A+
α consists of normalized analytic functions F (z) in U which are of the

form F (z) = z +

∞∑
n=2

an,αz
n+α−1 where a0,α = 0, a1,1 = 1 and the class A−α consists

of normalized analytic functions F (z) in U of the form F (z) = z −
∞∑
n=2

an,αz
n+α−1,

an,α ≥ 0; n = 2, 3, . . . where α ≥ 1 takes its values from the relation α =
n+m

m
,

m ∈ N.
Also the authors [5] introduced the differential operator Dk

α,λ for f(z) ∈ A+
α [5]

which is defined as follows:

D0
α,λF (z) = F (z) = z +

∞∑
n=2

an,αz
n+α−1, α ≥ 1, λ < α

D1
α,λF (z) = (λ− α+ 1)F (z) + (α− λ)zF ′(z)

= z +

∞∑
n=2

[(α− λ)(n+ α− 2) + 1]an,αz
n+α−1

...

Dk
α,λF (z) = D(Dk−1F (z)) = z +

∞∑
n=2

[(α− λ)(n+ α− 2) + 1]an,αz
n+α−1.

Ali et al. [1] used the results obtained by Bulboacă [3] and gave the sufficient
conditions for certain normalized analytic functions f ∈ A to satisfy

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z) where q1 and q2 are given univalent functions in U with

q1(0) = 1 and q2(0) = 1.
The purpose of this paper is to apply a method based on the differential subor-

dination in order to derive sufficient conditions for F ∈ A+
α and F ∈ A−α to satisfy

(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+r

≺ q(z) for 0 ≤ r ≤ 1 and for every z ∈ U .

where q is a given univalent function in U with q(z) 6= 0.
In order to prove our subordination results, we make use of the following known

results.
Theorem 1. [7] Let the function q be univalent in the open unit disk U and θ

and φ be analytic in a domain D containing q(U) with φ(ω) 6= 0 when ω ∈ q(U).
Set Q(z) = zq′(z)φ(q(z)), h(z) = θ(q(z)) +Q(z).
Suppose that
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1. Q is starlike univalent in U , and

2. Re

{
zh′(z)

Q(z)

}
> 0 for z ∈ U .

If θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)), then p(z) ≺ q(z) and q is the
best dominant.

Definition 1. [7] Denote by Q the set of all functions f that are analytic and
injective on U\E(f), where E(f) = {ζ ∈ ∂ U : lim

z→ζ
f(z) = ∞} and are such that

f ′(ζ) 6= 0 for ζ ∈ ∂U\E(f).

Theorem 2. [9] Let q(z) be convex univalent in the unit disk U and ψ and

δ ∈ C with <
{

1 +
zq′′(z)

q′(z)
+
ψ

δ

}
> 0. If p(z) is analytic in U and ψp(z) + δzp′(z) <

ψq(z) + δzq′(z), then p(z) ≺ q(z) and q is the best dominant.

Theorem 3. [3] Let the function q be univalent in the open unit disk U and v
and φ be analytic in a domain D containing q(U). Suppose that

1. <
{
v′(q(z))

φ(q(z))

}
> 0 for z ∈ U and

2. zq′(z)φ(q(z)) is starlike univalent in U .

If p ∈ H[q(0), 1] ∩Q, with P (U) ⊆ D, and v(p(z)) + zp′(z)φ(p(z)) is univalent in U
and v(q(z)) + zq′(z)φ(q(z)) ≺ v(p(z)) + zp′(z)φ(p(z)) then q(z) ≺ p(z) and q is the
best subordinant.

2. Subordination and Superordination between Analytic Functions

Theorem 4. Let the function q(z) be analytic and univalent in U such that

q(z) 6= 0 ∀ z ∈ U and let δ be a non-zero complex number. Suppose that
zq′(z)

q(z)
is

starlike univalent in U and

<
{

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
+
q(z)

δ
(b+ 2cq(z) + 3dq2(z))

}
> 0, b, c, d ∈ C. (1)
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Let

Φk
α,λ(δ, γ, F )(z) = a+ b(Dk

α,λF (z))′

(
z

Dk
α,λF (z)

)1+γ

+ c

(Dk
α,λF (z))′

(
z

Dk
α,λF (z)

)1+γ
2

+ d

(Dk
α,λF (z))′

(
z

Dk
α,λF (z)

)1+γ
3

+ δ

[
z(Dk

α,λF (z))′′

(Dk
α,λF (z))′

+ (1 + γ)

(
1−

z(Dk
α,λF (z))′

Dk
α,λF (z)

)]
(2)

If F ∈ A+
α satisfies the subordination:

Φk
α,λ(δ, γ, F )(z) ≺ a+ bq(z) + cq2(z) + dq3(z) + δ

zq′(z)

q(z)

then for 0 ≤ γ ≤ 1,

(Dk
α,λF (z))′

(
z

Dk
α,λF (z)

)1+γ

≺ q(z) (3)

and q is the best dominant.

Proof. Let the function p be defined by

p(z) := (Dk
α,λF (z))′

(
z

Dk
α,λF (z)

)1+γ

, z ∈ U , z 6= 0, F ∈ A+
α , D

k
α,λF (z) 6= 0.

By a straight forward computation, we have,

zp′(z)

p(z)
=
z(Dk

α,λF (z))′′

(Dk
α,λF (z))′

+ (1 + γ)

(
1−

z(Dk
α,λF (z))′

Dk
α,λF (z)

)

By setting θ(w) := a+ bw+ cw2 + dw3 and φ(w) =
δ

w
, a 6= 0 it can be verified that

θ is analytic in C and φ is analytic in C\{0} and φ(w) 6= 0, w ∈ C\{0}.
Also by letting

Q(z) = zq′(z)φ(q(z)) = δ
zq′(z)

q(z)

and

h(z) = θ(q(z)) +Q(z)

= a+ bq(z) + cq2(z) + dq3(z) + δ
zq′(z)

q(z)
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We find that Q(z) is starlike univalent in U and that

Re

{
zh′(z)

Q(z)

}
= Re

{
1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)
+
b

δ
q(z) +

2c

δ
q2(z) +

3d

δ
q3(z)

}
> 0.

Now

θ(p(z)) + zp′(z)φ(p(z)) = a+ bp(z) + cp2(z) + dp3(z) + δ
zp′(z)

p(z)

= a+ b(Dk
α,λF (z))′

(
z

Dk
α,λF (z)

)1+γ

+ c

(Dk
α,λF (z))′

(
z

Dk
α,λF (z)

)1+γ
2

+ d

(Dk
α,λF (z))′

(
z

Dk
α,λF (z)

)1+γ
3

+ δ

[
z(Dk

α,λF (z))′′

(Dk
α,λF (z))′

+ (1 + γ)

(
1−

z(Dk
α,λF (z))′

Dk
α,λF (z)

)]

≺ a+ bq(z) + cq2(z) + dq3(z) + δ
zq′(z)

q(z)

Assertion (3) of the theorem follows by an application of Theorem 1.

For the choices q(z) =
1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1, q(z) =

(
1 + z

1− z

)µ
,

µ 6= 0 and q(z) = eµAz, µ 6= 0, in Theorem 4, we get the following results.

Corollary 1. Let δ be a non-complex number. Assume that (1) holds and q is
convex univalent in U . If F ∈ A+

α and

Φk
α,λ(δ, γ, F )(z) ≺ a+ b

1 +Az

1 +Bz
+ c

[
1 +Az

1 +Bz

]2
+ d

[
1 +Az

1 +Bz

]3
+ δ

z(A−B)

(1 +Az)(1 +Bz)
,

where Φk
α,λ(δ, γ, F ) is defined as in (2), then for 0 ≤ γ ≤ 1,(

Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

≺ 1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1 and

1 +Az

1 +Bz
is the best

dominant.
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Corollary 2. Let δ be a non-zero complex number. Assume that (1) holds and
q is convex univalent in U . If F ∈ A+

α and

Φk
α,λ(δ, γ, F )(z) ≺ a+ b

(
1 + z

1− z

)µ
+ c

(
1 + z

1− z

)2µ

+ d

(
1 + z

1− z

)3µ

+
2δµz

(1− z2)
, for z ∈ U , µ 6= 0

then (
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

≺
(

1 + z

1− z

)µ
and q(z) =

(
1 + z

1− z

)µ
is the best dominant.

Corollary 3. Assume that (1) holds and q is convex univalent in U . If F ∈ A+
α

and

Φk
α,λ(δ, γ, F )(z) ≺ a+ beµAz + ce2µAz + de3µAz + µδAz, for z ∈ U , µ 6= 0

then (
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

≺ eµAz

and q(z) = eµAz is the best dominant.

Remark 1. Letting r = 0 and k = 0 in Theorem 4,(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

≺ q(z) reduces to the result in [4] which is
z(F (z))′

F (z)
≺

q(z), z ∈ U , and F (z) 6= 0 and q(z) is the best dominant.

Theorem 5. Let the function q be convex univalent in the unit disk U such that

Re

{
1 +

zq′′(z)

q′(z)
+

1

δ

}
> 0, δ 6= 0 (4)

Suppose that
(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

is analytic in the disk U . If
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F ∈ A−α satisfies the subordination

ψkα,λ(δ, γ, F )(z) =
(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

+ δ
(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

{
z(Dk

α,λF (z))′′

(Dk
α,λF (z))′

+ (1 + γ)

[
1−

z(Dk
α,λF (z))′

Dk
α,λF (z)

]}
≺ q(z) + δzq′(z).

Then
(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

≺ q(z) (z ∈ U , Dk
α,λF (z) 6= 0) and q is the best

dominant.

Proof. Let the function p be defined by

p(z) =
(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

, Dk
α,λF (z) 6= 0, z ∈ U .

By setting ψ = 1, it can be observed that

p(z) + δzp′(z) =
(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

+ δ
(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ {
z(Dk

α,λF (z))′′

(Dk
α,λF (z))′

+ (1 + γ)

[
1−

z(Dk
α,λF (z))′

Dk
α,λF (z)

]}
≺ q(z) + δzq′(z).

Assertion of Theorem 5 follows by an application of Theorem 2.

Corollary 4. Assume that (4) holds and q is convex univalent in U . If F ∈ A−α
and

ψkα,λ(δ, γ, F )(z) ≺ 1 +Az

1 +Bz
+
δz(A−B)

(1 +Bz)2

then (
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

≺ 1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1

and q(z) =
1 +Az

1 +Bz
is the best dominant.
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Corollary 5. Assume that (4) holds and q is convex univalent in U . If F ∈ A−α
and

ψkα,λ(δ, γ, F )(z) ≺
(

1 + z

1− z

)µ
+

2µδz

(1− z2)

(
1 + z

1− z

)µ−1
for z ∈ U , µ 6= 0 then

(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

≺
(

1 + z

1− z

)µ

and q(z) =

(
1 + z

1− z

)µ
is the best dominant.

Corollary 6. Assume that (4) holds and q is convex univalent in U . If F ∈ A−α

and ψkα,λ(δ, γ, F )(z) ≺ eµAz+δµAzeµAz for z ∈ U , µ 6= 0 then
(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

≺

eµAz and q(z) = eµAz is the best dominant.

Remark 2. By taking k = 0 and γ = 0 in Theorem 5 we obtain the result found
in [4].

Theorem 6. Let δ be a non-zero complex number and let q be analytic and

univalent in U such that q(z) 6= 0 and
zq′(z)

q(z)
starlike univalent in U . Further, let

us assume that

Re

{
bq(z) + 2cq2(z) + 3dq3(z)

δ

}
> 0. (5)

If F ∈ A+
α ,

0 6=
(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

∈ H[q(0), 1] ∩Q

and Φk
α,λ(δ, γ, F ) is univalent in U , then

q(z) + δ
zq′(z)

q(z)
≺ Φk

α,λ(δ, γ, F )

implies

q(z) ≺ (Dk
α,λF (z))′

(
z

Dk
α,λF (z)

)1+γ

and q is the best subordinant where Φk
α,λ(δ, γ, F ) is defined as in (2).
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Proof. By setting v(w) := a+ bw+ cw2 + dw3 and φ(w) :=
δ

w
it can be easily

verified that v is analytic in C, φ is analytic in C\{0} and φ(w) 6= 0 (w ∈ C\{0}).
By the hypothesis of Theorem 3, zq′(z)φ(q(z)) is starlike univalent and

Re

{
v′(q(z))

φ(q(z))

}
= Re

{
bq(z) + 2cq2(z) + 3dq3(z)

δ

}
> 0.

Then the assertion of this theorem follows by an application of Theorem 3.

Combining Theorem 4 and 6, we get the following theorem.
Theorem 7. Let δ be a non-zero complex number and let q1 and q2 be univalent

in U such that q1(z) 6= 0 and q2(z) 6= 0, ∀ z ∈ U with
zq′1(z)

q1(z)
and

zq′2(z)

q2(z)
being

starlike univalent. Suppose that q1 satisfies (5) and q2 satisfies (1). If F ∈ A+
α ,(

Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

∈ H[q(0), 1] ∩Q, and Φk
α,λ(δ, γ, F ) is univalent in U ,

then

q1(z) +
δzq′1(z)

q1(z)
≺ Φk

α,λ(δ, γ, F ) ≺ q2(z) +
δzq′2(z)

q2(z)

implies q1(z) ≺
(
Dk
α,λF (z)

)′( z

Dk
α,λF (z)

)1+γ

≺ q2(z) and q1 and q2 are the best

subordinant and the dominant respectively.
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