GROUPS, COMPLETE $\ell\text{-}\textsc{groupoids}$, and cohen-macaulay RINGS

Ali Molkhasi

ABSTRACT. In this paper, R is a commutative ring with an identity, L(R) is the lattice of ideals of R, and L(G) is the lattice of all subgroups of a finite group G. It is shown that if L(R) is a principal lattice, P is cl-groupoid with zero, and G is a finite cyclic group, then R[P] and R[L(G)] are Cohen-Macaulay rings.

2000 Mathematics Subject Classification: 11T06, 06E05, 06B23, 06C15.

1. INTRODUCTION

The basic concept of abstract commutative ideal theory is the concept of Noether lattice which was introduced by R. P. Dilworth [3] as an abstraction of the lattice of ideals of a Noetherian ring. Recall in [3], a multiplicative lattice is a complete lattice L with a commutative, associative multiplication which distributes over arbitrary joins and such that the largest element I of L is the identity for the multiplication. Basically, an element E of a multiplicative lattice L is said to be meet (join-) principal if $(A \land (B:E))E = (AE) \land B$ (if $(BE \lor A) : E = B \lor (A:E)$) for all A and B in L. A principal element is an element that is both meet-principal and join-principal. L is called principal lattice when each of its elements is principal. Cohen-Macaulay property is one of the most important notion in the commutative algebra. Local ring R is said Cohen-Macaulay when so is R as an R-module. A Noetherian ring (which may not be local) R is said to be Cohen-Macaulay when its localization at any maximal ideal is Cohen-Macaulay local. In Section 2, relationship Brouwerian lattice, po-groupoid, and Cohen-Macaulay ring is considered. In end section it is shown that, if L(R) is principal lattice and G is a finite cyclic group, then R[L(G)]is Cohen-Macaulay.

2. Residuation And Brouwerian Lattice And Cohen-Macaulay

A number of papers are devoted to the subject of guaranteeing the distributivity of lattice by imposing equations on a fixed generating set. A lattice L is distributive when it satisfies $x \land (y \lor z) = (x \land y) \lor (x \land z)$ for all $x, y, z \in L$. In a bounded distributive lattice, a is a complement of b iff $a \land b = 0$ and $a \lor b = 1$. Let $a \in [b, c]$; x is a relative complement of a in [b, c] iff $a \land x = b$ and $a \lor x = c$. A complement lattice is a bounded lattice in which every element has a complement. A relatively complemented lattice is a lattice in which every element has a relative complement in any interval containing it. A Boolean lattice is a complement x such that $x \land a = 0$. More generally, $a \land x \leq b$ if and only if $a \land x \land b' = 0$, that is $(a \land b') \land x = 0$ or $x \leq (a \land b')' = b \lor a'$. Hence, given $a, b \in A$, there exists a largest element $c = b \lor a'$ such that $a \land c \leq b$. Brouwer and Heyting characterized an important generalization of Boolean algebra through an extension of the preceding property.

More generally, let L be a lattice with 0; an element a^* is a pseudocomplement of $a \ (\in L)$ iff $a \wedge a^* = 0$, and $a \wedge x = 0$ implies that $x \leq a^*$.

Definition 2.1. A Brouwerian lattice is a lattice L in which, for any given elements a and b, the set of all $x \in L$ such that $a \wedge x \leq b$ contains a greatest element b : a, the relative pseudo-complement of a in b.

Theorem 2.1. Any Brouwerian lattice is distributive.

Proof. Given a, b, c form $d = (a \land b) \lor (a \land c)$, and consider d : a. Since $a \land b \leq d$ and $a \land c \leq d$, we have $b \leq d : a$ and $c \leq d : a$. Hence $b \land c \leq d : a$, and so $a \land (b \lor c) \leq a \land (d : a) \leq d = (a \land b) \lor (a \land c)$.

Definition 2.2. A *po-groupoid* (or *m-poset*) is a poset M with a binary multiplication which satisfies the isotonicity condition $a \leq b$ implies $xa \leq xb$ and $ax \leq bx$ for all $a, b, x \in M$.

Example 2.1. In any ring R, the additive subgroups X, Y, Z, \ldots form an *m*-poset with zero under inclusion, if XY is defined as the set of all finite sums $\sum x_i y_i \ (x_i \in X, y_i \in Y)$.

Definition 2.3. If M is a lattice with a multiplication and $a(b \lor c) = ab \lor ac$, $(a \lor b)c = ac \lor bc$, for all $a, b, c \in M$ holds, then M is called an m-lattice or ℓ -groupoid.

One of the most important concepts in the theory of ℓ -groupoids is that of residual, defined as follows.

Example 2.2. In any ring R, the two-sided ideals form a residuated lattice, under the multiplication of Example 2.1.

Corollary 2.1. A lattice L is a residuated lattice, when xy is defined as $x \wedge y$, if and only if it is a Brouwerian lattice.

Most residuated lattices arising in applications are complete, and satisfy the infinite distributive laws $a(\forall b_{\beta}) = \lor(ab_{\beta})$ and $(a_{\alpha})b = \lor(a_{\alpha}b)$. A lattice L is called complete if sup H and inf H exists for all $H \subseteq P$. This leads us to make the following definition.

Definition 2.4. A complete ℓ -groupoid, or *cl-groupoid*, is a complete lattice with a binary multiplication satisfying $a(\forall b_{\beta}) = \lor(ab_{\beta})$ and $(a_{\alpha})b = \lor(a_{\alpha}b)$. A cl-groupoid with associative multiplication is called a *cl-semigroup*, if it has a 1, it is called a *cl-monoid*.

The modules of a ring (Example 2.1, 2.2) constitute a typical cl-groupoid; $a(\forall b_{\beta}) = \forall (ab_{\beta})$ and $(a_{\alpha})b = \forall (a_{\alpha}b)$ follows from the fact that the operations involved are finitely(binary); we omit the verification. An ℓ -groupoid is not just a *po-groupoid* which is lattice under its partial ordering relation: products must also be distributive on joins.

Theorem 2.2. Let R be a commutative ring with an identity such that L(R) be a principal lattice. If P is cl-groupoid with zero, then R[P] is Cohen-Macaulay.

Proof. If L(R) is a principal lattice, then R is a Noetherian multiplication ring. So the ring R is Cohen-Macaulay ring (see [5], [4] and [6]). On the other hand, if R is Cohen-Macaulay ring and P is a distributive lattice, then R[P] is Cohen-Macaulay (see [2]). In particular, any cl-groupoid with zero is residuated. Thus, it is a Brouwerian lattice. Completing the proof of Theorem 2.1 and Corollary 2.1.

3. Subgroup lattices And Cohen-Macaulay

Note that, a ring is called a multiplication ring, if every ideal of R is product of two ideals. Let M be a finitely generated module over a Noetherian ring R. We say that $x \in R$ is an M-regular element, if xg = 0 for $g \in M$ implies g = 0, in the

other words, if x is not a zero-divisor on M. A sequence x_1, \dots, x_r of elements of the ring R, is called an M-regular sequence or simply an M-sequence if the following conditions are satisfied:

1. x_i is an $M/(x_1, \dots, x_{i-1})M$ -regular element for $i = 1, \dots, r$; 2. $M/(x_1, \dots, x_r)M \neq 0$.

Suppose $I \subseteq R$ is an ideal with $IM \neq M$. The *depth* of I on M is maximal length of an M-regular sequence in I, denoted by depth(I, M). If R is a local ring with a unique maximal ideal \mathbf{m} , we write, $depth(\mathbf{m})$, for $depth(\mathbf{m}, M)$. Let R be a Noetherian local ring. A finitely generated R-module M, is a Cohen-Macaulay module, if depth(M) = dim(M). If R itself is a Cohen-Macaulay module, then it is called a Cohen-Macaulay ring.

Let \sum consist of the subgroups of any group G, and let \leq mean set-inclusion. Then \sum is a complete lattice, with $H \wedge K = H \cap K$ (set-intersection), and $H \vee K$ the least subgroup in \sum containing H and K (which is not their set-theoretical union). We now turn our attention to the lattice L(G) of all subgroups of G.

Theorem 3.1. The lattice L(G) of all subgroups of a finite group is distributive if and only if G is cyclic.

Proof. (\Longrightarrow) Let Z_r be a finite cyclic group of order r, with generator a. Then [1] every subgroup of Z_r is cyclic, with generator a^s for some s|r. Hence the lattice of positive integers, under the relation m|n. This shows that the lattice of all subgroups of any finite cyclic group is distributive.

(\Leftarrow) In group G, let A, B, C be cyclic subgroups generated by a, b, and c = ab, respectively. If $(A \lor B) \land C = (A \land C) \land (B \land C$, then ab = ba. Hence, if L(G)is distributive, then G must be the direct product of cyclic groups of prime-power order $q_1 = p^{k_1}, \ldots, q_r = p_r^{k_r}$; with generators a_1, \ldots, a_r . If two were equal, then G would contain two elements $b_i = a_i^{q_i/p}$ and $b_j = a_j^{q_i/p}$, $p = p_i = p_j$. These would generate an elementary Abelian group whose subgroup-lattice was not distributive. Hence, the p_i are all distinct; but in this case, $a = a_1a_2 \ldots a_r$ is of order $q_1q_2 \ldots q_r$, and generates G, which is therefore cyclic.

Corollary 3.1. If R is Cohen-Macaulay ring and G is a finite cyclic group, then R[L(G)] is Cohen-Macaulay.

References

References

- G. Birkhoff and S. Mac Lane, A survey of modern algebra, 3d ed., Macmillan, (1965).
- [2] C. De Concini, D. Eisenbud and D. Procesi, (hodge algebras), asterisque, societe mathematique de france, 91 (1982).
- [3] R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math., 12 (1962), 481-498.
- [4] M. F. Janowitz, Principal mutiplicative lattices, Pacific J. Math., 33 (1970), 653-656.
- [5] A. Molkhasi, Polynomials, α -ideals and the principal lattice, Journal SFU, issue **3** (2011).
- [6] R. Naghipour, Locally unmixed modules and ideal topologies, J. Algebra., 236 (2001), 768-777.

Ali Molkhasi

Department of Mathematics University for Teachers of Iran, Tabriz and

Institute of Mathematics and Mechanics Academy of Sciences of Azerbaijan, Baku Address

email :molkhasi@gmail.com