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RULED SURFACES AND DUAL SPHERICAL CURVES

Yusuf Yayli and Semra Saracoglu

Abstract. In this paper, using curves in E(3) with tangent, normal, binormal
and darboux lines, we studied their dual spherical indicatrices. In addition, the dual
angles and lengths of pitch of the closed ruled surfaces are given. We showed that
tangent and binormal indicatrice curves are involutes of darboux indicatrice curves.
Depending on some differences that found, important results are presented about
these dual spherical indicatrice curves.
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1. Introduction

Dual numbers were ıntroduced in the 19th century by Clifford and their ap-
plications to rigid body kinematics was generalized by Study in their principle of
transference [16]. As it is known, the analytical tools in the study of 3-dimensional
kinematics and differential geometry of ruled surfaces are based on dual vector cal-
culus.

Important contributions to the curvature theory, frame approaches have been
made by R.L. Bishop, Mc Carthy, Bottema, Blaschke, Hacısalihoglu H., Rashad A.
Abdel-Baky...etc. In the study of P. Azariadis and N. Aspragathos, an alternative
representational model for 3 dimensional geometric entities is expressed, which is
based on dual unit vectors. Dual points are used to describe curves and surfaces in
E(3) as well as geometric invariant properties such as normal vectors or curvature
vectors.

In the first part of this study we briefly give basic concepts for the reader who
isn’t familiar with darboux, blaschke, frenet frames...etc. Necessary mathematical
formulations and conventions are presented. Next part of this study includes dual
spherical motions of curves with its tangent, normal, binormal and darboux lines.
When we give representation of geometric entities using different indicatrices, we use
the 5th part of P. Azariadis. S. G. Papageorgiou and N.A. Aspragathos expressed
similarly that the 3D surface is given by unique parametric equation. A general
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spatial displacement of an object is equivalent to a rotation around a line and a
translation along the same line. The name of motion is screw displacements around
an axis by a dual angle. At this time, Rashad A.Abdel-Baky’ s article shows us that
we can study a ruled surface as a curve on the dual unit sphere by using Blaschke
approach.

In addition, we present the kinematic interpretation of dual representations by
using relations between Blaschke, Darboux, Frenet Frames. Some theorems and
results are given for the special cases which the line is being the principal normal and
binormal of the base curve α. By analyzing Yaylı’s, Gürsoy’s, Helmutth’s, Keles and
Karadag’s, Abdel Baky’s articles, these theorems and results are developed. Fenchel
showed that the unit spherical closed curve is the principal normal indicatrice of a
closed space curve. In additon, the dual angle length of pitch of the closed ruled
surface are computed. Tangent and binormal indicatrice curves are involutes of
darboux indicatrice curve.

2. Basic Concepts

Now we give basic concepts on classical differential geometry of space curves.
We define dual numbers, Frenet frame, Blaschke frame and involute benefiting from
the references [1, 5, 8, 15, 16]

2.1. Dual Numbers

If p and p?are real numbers, the form

P̃ = p+ εp? (1)

is called a dual number.ε is the dual unit with the properties ε2 = 0, ε 6= 0, ε.1 = 1.ε
= ε. We can easily say that dual numbers forms a ring over the real number field.
We show the set of all dual numbers with ID. Such as, two dual numbers P̃ and Q̃
where

P̃ = p+ εp?, (2)

Q̃ = q + εq? (3)

are added componentwise

P̃ + Q̃ = (p+ q) + ε(p? + q?) (4)

and they are multiplied by

P̃ .Q̃ = p.q + ε(p?.q + p.q?). (5)
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For the equality of A and B , we have

P̃ = Q̃⇔ p = q (6)

and
p? = q?. (7)

ID3 is a set that is a module over the ring ID. It is called dual space. Dual vectors
are the elements of this dual space. So we can write a dual vector as

−→
P = p+ εp? (8)

where p? = qΛp and p, q, p? are real vectors in R3.

2.2. Frenet Frame [15]

We assume that the curve α is parametrized by arclength. Then, α′(s) is the unit
tangent vector to the curve, which we denote by T (s) Since t has constant length,
T ′(s) will be orthogonal to T (s). If T ′(s) 6= 0 then we define principal normal

N(s) =
T ′(s)

T ′(s)
(9)

vectorand the curvature
k1(s) =

∥∥T ′(s)
∥∥

So far, we have

T ′(s) = k1(s).T (s) (10)

If k1(s) = 0, the principal normal vector is not defined. If k1(s) 6= 0 then the
binormal vector b(s) is given by

B(s) = T (s)×N(s)

Then {T (s), N(s), B(s)} form a right -handed orthonormal basis for IR3. In sum-
mary Frenet formulas can be given as

T ′(s) = k1(s).N(s) (11)

N ′(s) = −k1(s).T (s) + k2(s).B(s) (12)

B′(s) = −k2(s).N(s). (13)

2.3. Blaschke Frame [13]
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Let M(s, u) be the ruled surface and A(s) be the dual spherical curve in ID3;

A(s) = a(s) + εa?(s) (14)

We now define an orthonormal moving frame along this dual curve as follows:

A1 = A(s), (15)

A2 =
A′

1

‖A′
1‖
, (16)

A3 = A1 ×A2. (17)

From now on we consider the case without a(s) = constant vector and a?(s) = 0.
In the case a(t) = constant vector the ruled surface M(s, u) is a cylinder and in the
case a?(s) = 0 the ruled surface M(t,u) is a cone. The frame {A1, A2, A3} is called
Blaschke frame.

2.4. Involute

The orbit that is the perpendicular to the tangents of a curve is involute of this
curve.

2.5. Summary Representation

In addition, we can give a summary representation of this study as follows:

2.5.1. Spherical Indicatrice

Let α be a curve in E3,

Figure 1: Indicatrices on S2 unit sphere.

2.5.2. Ruled Surface and Dual Spherical Curves

Let α be base curve and
−→
X is director vector of α.
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Figure 2: Indicatrices on unit dual sphere.

Ruled Surfaces

Φ
T̂

(s, v) = α(s) + v.T

Φ
N̂

(s, v) = α(s) + v.N

Φ
B̂

(s, v) = α(s) + v.B

Dual Curves

T̂ = T + εα ∧ T
N̂ = N + εα ∧N
B̂ = B + εα ∧B

Let β be the other curve and {T,N,B} is Frenet Frame of α.

Ruled Surfaces

ΦT (s, v) = β(s) + v.T

ΦN (s, v) = β(s) + v.N

ΦB(s, v) = β(s) + v.B

Dual Curves

T = T + εβ ∧ T
N = N + εβ ∧N
B = B + εβ ∧B
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Figure 3: Indicatrices on unit dual sphere.

3. Indicatrices and Dual Spherical Motion

3.1. First Kind of Indicatrice Curve

Let

α : I → E3 (18)

s 7→ α(s)

be unit speed curve and {T,N,B}Frenet frame of α. T,N,B are the unit tangent,
principal, normal and binormal vectors respectively. With the assistance of α, we
define a dual curve in ID3. So, let us have a closed spherical dual curve α̂ of class
C1 on a unit dual sphere S1in ID3. The curve α describes a closed dual spherical
motion.If

α̂ : S1 → ID3 (19)

s 7→ α(s) +

∮
α ∧ Tdt =

∮
(T + ε(α ∧ T ))dt

then the curve α can be written as :

α̂ = α(s) + εα?(s). (20)

Therefore, when we have
α : I → E3
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s 7→ α(s)

the Peano directiion of α and the projection of Pα can be given by [16]

Pα =

∮
S1

α ∧ Tdt (21)

Hence, Fα is a projection area of closed curve α on the plane that its normal is N.

Fα = 〈Pα, N〉 . (22)

We now define an orthonormal moving frame along dual curve as follows in ID3;
The tangent indicatrice of α̂ is

T̂ =
dα̂

ds
(23)

T̂ = T + εα ∧ T,
∥∥∥T̂∥∥∥ = 1. (24)

The principal normal indicatrice of α̂ is

N̂ =

dT̂

ds∥∥∥∥∥dT̂ds
∥∥∥∥∥
, (25)

N̂ = N + εα ∧N (26)

The binormal indicatrice of α̂ is

B̂ = T̂ × N̂ (27)

= B + εα ∧B

Subsequently, we can write matrix form as: T̂ ′

N̂ ′

B̂′

 =

 0 k1 0
−k1 0 k2 + ε

0 −k2 − ε 0

 .
 T̂

N̂

B̂

 (28)

On the other hand, as [14], we can define the Darboux screw. It can be seen

that the real part of Ŵ is the darboux vector of {T,N,B} Frenet motion.

Theorem 1 Darboux screw is given by

Ŵ = (k2 + ε).T̂ (t) + k1.B̂(t). (29)
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Proof. To proof this theorem, we have to show the truth of these following
equations:

Ŵ ∧ T̂ = T̂ ′ (30)

Ŵ ∧ N̂ = N̂ ′

Ŵ ∧ B̂ = B̂′.

Theorem 2 T̂ , B̂ dual spherical curves on dual sphere are involutes of Ĉ where

Ĉ =
Ŵ∥∥∥Ŵ∥∥∥ .

Proof. According to the theorem.1, If

Ŵ = (k2 + ε).T̂ (t) + k1.B̂(t), (31)

then

Ĉ =
Ŵ∥∥∥Ŵ∥∥∥ = (

√
k21 + k22 + ε

k2√
k21 + k22

).Ŵ (32)

and 〈
dĈ

dS
,
dT̂

ds

〉
= 0, (33)〈

dĈ

ds
,
dB̂

ds

〉
= 0.

Hence, in dual sphere T and B are involutes of Ĉ (Ĉ is fixed pole curve). Privately,
if we take the real part of the following equations,

T̂ = T + εα ∧ T (34)

N̂ = N + εα ∧N
B̂ = B + εα ∧B

We can easily say that Ŵ is the darboux vector of the motion of
{
T̂ , N̂ , B̂

}
. If

T,N,B are spherical indicatrices, then〈
dĈ

dS
,
dT̂

ds

〉
= 0, (35)〈

dĈ

ds
,
dB̂

ds

〉
= 0.
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Result. α is base curve on E3, T and B are tangent, binormal indicatrices
respectively and the fixed centrode is the curve C descibed by c=c(s). From this, it
follows that the indicatrices T and B are spherical involutes of C.

Figure 4: T and B are spherical linvolutes of C. [3]

If we take A1 = T, A2 = N, A3 = B then the Blaschke’s inviriants of the dual
curve T̂ (t) is given by

P = p+ εp? =
∥∥T ′∥∥ = k1 (36)

Q = q + εq? =
det
∥∥∥T̂ , T̂ ′, T̂ ”

∥∥∥
P 2

where

k1 = P (37)

k2 + ε = Q (38)

On the other hand, it can be easily seen that there is a ruled surface corresponding
to T̂ (s) on ID3

α̂(s) = T̂ (s) = T + ε(α ∧ T ) (39)

where

T̂ (s) = α(s), (40)

α?(s) = ε(α̂ ∧ T )
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then

Φ
T̂

(s, v) = α ∧ α? + v.T (s) (41)

= T ∧ (α ∧ T ) + v.T

= α(s)− 〈T, α〉 .T + v.T

= α(s) + (v − 〈T, α〉).T
= α(s) + v.T

Smiliarly, if N̂(s), B̂(s) are normal and binormal indicatrices of α̂(s) respectively,
then we can give the ruled surfaces corresponding to the curve N̂(s), B̂(s). In this
case, the equations can be given as:

N̂ = N(s) + εα ∧N (42)

N̂ =

dT̂

ds∥∥∥∥∥dT̂ds
∥∥∥∥∥

Φ
N̂

(s, v) = α(s) + v.N

B̂ = B(s) + εα ∧B = T̂ ∧ N̂
Φ
B̂

(s, v) = α(s) + v.B

Let
{
O, T̂ , N̂ , B̂

}
and {O,−→e1 ,−→e2 ,−→e3} be two orthonormal coordinate systems of

S moving unit dual sphere and S′ fixed unit dual sphere with the same ‘O’ origin,
and let represent one parameter dual spherical motion (dual rotation) between S, S′

dual spheres with S/S′. During the spherical motion S/S′ on the α base curve α :

I → E3,
−→
X is director vector and s is the arc parameter of α the base curve of

Φ(s, v) closed surface. In this case, Steiner vector is

D̂ =

∮
Ŵ .ds; (43)

D̂ =

∮
(k2 + ε)T̂ +

∮
k1B̂.

If
−→
X director vector is

X̂ = (x1 + εx?1).T̂ + (x2 + εx?2)N̂ + (x1 + εx?1)B̂ (44)

where ∥∥∥X̂∥∥∥ = 1, (45)

x̂1 = x1 + εx?1, x̂2 = x2 + εx?2, x̂3 = x3 + εx?3
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then the dual angle of pitch of the closed ruled surface generated by a director vector
X of α̂(s) closed curve is

∧
X̂

= −
〈
D̂, X̂

〉
. (46)

Thus, with the aid of

X̂ = x̂1.T̂ + x̂2.N̂ + x̂3.B̂ (47)

D̂ =

∮
(k2 + ε)dsT̂ +

∮
k1.dsB̂ (48)

the dual angle of pitch of the indicatrices are obtained as:

∧
T̂

=

∮
(k2 + ε)ds (49)

∧
N̂

= 0 (50)

∧
B̂

=

∮
k1.ds. (51)

Thus,

∧
X̂

= −[x̂1.

∮
(k2 + ε)ds+ x̂3

∮
k1ds] (52)

= −[x̂1.

∮
k2ds+ εx̂1.

∮
ds+ x̂3

∮
k1ds]

= −[x̂1.

∮
k2ds+ x̂3

∮
k1ds+ εx̂1.

∮
ds]

= −[(x1 + εx?1).

∮
k2ds+ (x3 + εx?3).

∮
k1ds+ ε(x1 + εx?1).

∮
ds]

= −{[x1.
∮
k2ds+ x3.

∮
k1ds] + ε[x?1.

∮
k2ds+ x?3

∮
k1ds+ x1.

∮
ds]}

In this case, if we compose dual angle of pitch of the closed ruled surface with dual
and real parts,

∧
X̂

= −
〈
D̂, X̂

〉
(53)

= −〈d, x〉 − ε(〈d?, x〉+ 〈d, x?〉)

can be seen. Thus the relation between λ
X̂

angle of pitch of the closed ruled surface

that corresponds to X̂ and L
X̂

the length of pitch is:

∧
X̂

= λ
X̂
− ε.L

X̂
. (54)
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Then, the real and dual part can be designed as:

λ
X̂

= −〈d, x〉 = −[x1.

∮
k2ds+ x3.

∮
k1ds] (55)

L
X̂

= [x?1.

∮
k2ds+ x?3

∮
k1ds+ x1.

∮
ds] = (〈d?, x〉+ 〈d, x?〉) (56)

SPECIAL CASES

1. The case X̂ = T̂ ;
In this case; x̂1 = 1, x̂2 = x̂3 = 0. Thus,

∧
T̂

= −
〈
D̂, T̂

〉
(57)

= −
∮

(k2 + ε)ds

= −
∮
k2ds− ε

∮
ds = λ

T̂
− εL

T̂
.

Here λ
T̂

is dual angle of pitch of the closed ruled surface and L
T̂

is dual length of

pitch of closed ruled surface that drawn by T̂ during α(s).
2. The case X̂ = N̂ ;
In this case; x̂2 = 1, x̂1 = x̂3 = 0. Thus,

∧
N̂

= 0 (58)

3. The case X̂ = B̂;
In this case; x̂3 = 1, x̂1 = x̂2 = 0. Thus,

∧
B̂

= −
〈
D̂, B̂

〉
= −

∮
k1ds = −L

B̂
(59)

3.2. Second Kind of Indicatrice Curve

Let β(s) be a curve and let its parameter be the same as α(s).

β : I → E3 (60)

s 7→ β(s)

Then we get ruled surfaces that produced by
{
T ,N,B

}
frame as:

Φ(s, v) : I × R→ E3 (61)

Φ(s, v) = β(s) + v.X(s).
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Smiliarly, dual indicatrice curves can be given as:

T = T + εβ ∧ T (62)

N = N + εβ ∧N (63)

B = B + εβ ∧B (64)

Thus, we can write the ruled surfaces for T ,N,B as follows:

ΦT (s, v) = β(s) + vT (65)

ΦN (s, v) = β(s) + vN

ΦB(s, v) = β(s) + vB.

Accordingly, we get T as:

T = T + εβ ∧ T (66)

T
′

= T ′ + ε(β′ ∧ T + β ∧ T )

= T ′ + ε(β′ ∧ T + β ∧ (k1N))

= T ′ + ε [(λ1T + λ2N + λ3B) ∧ T + k1β ∧N ]

= k1(N + εβ ∧N)− ελ2B + ελ3N

= k1.N + ε(λ3N + ελ3β ∧N)− ελ2B
= (k1 + ελ3).N − ελ2B

Then we get N as:

N = N + εβ ∧N (67)

N
′

= N ′ + ε(β′ ∧N + β ∧N ′)

= (−k1T + k2B) + ε[(λ1T + λ2N + λ3B) ∧N + β ∧ (−k1T + k2B)]

= (−k1T + k2B) + ε(−λ3T + λ1B − k1β ∧ T + k2β ∧B)

= (−k1T + k2B)− ελ3T + ελ1B)

= (−k1 − ελ3).T + (k2 + ελ1).B

Smiliarly, we get B as:

B = B + εβ ∧B (68)

B
′

= B′ + ε(β′ ∧B + β ∧B′) = −k2N + ε [(λ1T + λ2N + λ3B) ∧B + β ∧ (−k2N)]

= −k2N + ε [(λ2T − λ1N − k2β ∧N)] = (−k2 − ελ1)N + ελ2T .
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Consequently, the matrix form can be given as: T
′

N
′

B
′

 =

 0 k1 + ελ3 −ελ2
−k1 − ελ3 0 k2 + ελ1

ελ2 −k2 − ελ1 0

 .
 T

N

B

 . (69)

We get Darboux screw as:

W = (k2 + ελ1).T + ελ2.N + (k1 + ελ3).B (70)

Specially, for λ1 = 1, λ2 = λ3 = 0; Darboux screw for Frenet.

W = (k2 + ε)N + k1B, (71)

can be found. Thus,

〈
W,W

〉
= (k2 + ελ1)

2 + (k1 + ελ3)
2 = k21 + k22 + 2ε(λ1k2 + λ3k1) = x+ 2εx? (72)

Then, the norm of W Darboux screw is

√
x+ εx? =

√
x+ ε

x?√
x

(73)∥∥W∥∥ =
√
k21 + k22 + ε

λ1k2 + λ3k1√
k21 + k22

= Ψ + εΨ?

So,

Ψ? =
λ1k2 + λ3k1√

k21 + k22
. (74)

Now, we present the dual angles of pitch and Steiner vector of spherical motion.
Steiner vector of this motion is,

D =

∮
(k2 + ελ1)dsT + ε

∮
λ2dsN +

∮
(k1 + ελ3)dsB. (75)

Theorem 3 T ,B dual spherical curves on dual sphere aren’t involutes of C where

C =
W∥∥W∥∥ .

Proof. We can write the matrix form as: T
′

N
′

B
′

 =

 0 c −b
−c 0 a
b −a 0

 T

N

B

 (76)
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where

a = k2 + ε.λ1 (77)

b = ε.λ2

c = k1 + ε.λ3

Thus, we get C as follows:

C =
W∥∥W∥∥ (78)

= (
a√

a2 + b2 + c2
).T + (

b√
a2 + b2 + c2

).N + (
c√

a2 + b2 + c2
).B

Then,

C
′
= (

a√
a2 + b2 + c2

)′.T + (
b√

a2 + b2 + c2
)′.N + (

c√
a2 + b2 + c2

)′.B

This shows that

〈
dC

dS
,
dT

ds

〉
6= 0, (79)〈

dC

ds
,
dB

ds

〉
6= 0.

From this, we can easily say that T ,B dual spherical curves on dual sphere aren’t

involutes of W where C =
W∥∥W∥∥ . But if we get special values as λ1 = 1, λ2 = λ3 = 0,

these T ,B dual spherical curves on dual sphere can be involutes of W where C =
W∥∥W∥∥ .

Theorem 4 On S/S′ unit dual spherical motion with one parameter, let ∧Xbe the

angel of pitch of closed ruled surface that is drawn by
−→
X = −→x + ε

−→
x? unit dual

vector.∧X is denoted by:
∧X = −

〈
D,X

〉
. (80)

Here, dual Steiner vector of dual spherical motion is

D =
−→
d + ε

−→
d? =

∮
(k2 + ελ1)dsT + ε

∮
λ2dsN +

∮
(k1 + ελ3)dsB, (81)
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where
x1 = x1 + εx?1, x2 = x2 + εx?2, x3 = x3 + εx?3 (82)

the elements of ID and
−→
X vector is

X = x1T + x2N + x3B. (83)

Thus,

∧X = −[x1

∮
(k2 + ελ1)ds+ εx2

∮
λ2ds+ x3

∮
(k1 + ελ3)ds] (84)

= −[x1

∮
k2ds+ εx1

∮
λ1ds+ εx2

∮
λ2ds+ x3

∮
k1ds+ εx3

∮
λ3ds]

= −[x1

∮
k2ds+ εx1

∮
λ1ds+ εx2

∮
λ2ds+ x3

∮
k1ds+ εx3

∮
λ3ds]

= −[(x1 + εx?1)

∮
k2ds+ ε(x1 + εx?1)

∮
λ1ds+ ε(x2 + εx?2)

∮
λ2ds+

(x3 + εx?3)

∮
k1ds+ ε(x3 + εx?3)

∮
λ3ds]

= −[x1

∮
k2ds+ εx?1

∮
k2ds+ εx1

∮
λ1ds+ εx2

∮
λ2ds

+x3

∮
k1ds+ εx?3

∮
k1ds+ εx3

∮
λ3ds]

= −{x1
∮
k2ds+ x3

∮
k1ds+ ε[x?1

∮
k2ds+ x1

∮
λ1ds+ x2

∮
λ2ds

+x?3

∮
k1ds+ x3

∮
λ3ds]}

Depending on this, we get

∧X = −
〈
D,X

〉
= −〈d, x〉 − ε(〈d?, x〉+ 〈d, x?〉) (85)

and then we can give the relation between λX and LX as follows:

∧X = λX − εLX . (86)

Accordingly to this, we can give

λX = −〈d, x〉 = −[x1

∮
k2ds+ x3

∮
k1ds] (87)

LX = 〈d?, x〉+ 〈d, x?〉 = [x?1

∮
k2ds+ x1

∮
λ1ds+ x2

∮
λ2ds (88)

+x?3

∮
k1ds+ x3

∮
λ3ds]
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where
X = (x1, x2, x3), X? = (x?1, x

?
2, x

?
3) (89)

SPECIAL CASES

1. The case X = T ;
In this case; x1 = 1, x2 = x3 = 0. Thus,

∧T = −
〈
D,T

〉
= −

∮
(k2 + ελ1)ds = −

∮
k2ds− ε

∮
λ1ds = LT + ελT . (90)

2. The case X = N ;
In this case; x2 = 1, x1 = x3 = 0. Thus,

∧N = 0 (91)

3. The case X = B;
In this case; x3 = 1, x1 = x2 = 0. Thus,

∧B = −
〈
D,B

〉
= −

∮
k1ds− ε

∮
λ3ds = λB − εLB. (92)

4. Conclusions

In this study, at first we get Frenet motion on Euclide space, by taking two
different curves.Then, investigating this motion on dual sphere, we give the gener-
alization of Frenet motion on dual sphere. At this time, angles and lengths of pitch
of closed ruled surfaces are presented. Some differences are found . Depending on
this, important results are given about these dual spherical indicatrice curves.
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