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Abstract. In this paper we introduce two integral operators for analytic func-
tions fi(z), gi(z) in the open unit disk U. The main object of the present paper is
to study the order of convexity for these integral operators.
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1. Introduction and preliminaries

Let A denote the class of functions of the form

f (z) = z +

∞∑
n=2

anz
n,

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}

and satisfy the following usual normalization condition

f (0) = f ′ (0)− 1 = 0.

We denote by S the subclass of A consisting of functions f which are univalent in
U.

A function f belonging to S is a starlike function by the order α, 0 ≤ α < 1 if f
satisfies the inequality

Re

(
zf ′(z)

f(z)

)
> α (z ∈ U) .
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We denote this class by S∗ (α) .
A function f belonging to S is a convex function by the order α, 0 ≤ α < 1 if f

satisfies the inequality

Re

(
zf ′′(z)

f ′(z)
+ 1

)
> α (z ∈ U) .

We denote this class by K(α). A function f ∈ S is in the class R (α) if and only if

Re
(
f ′(z)

)
> α (z ∈ U) .

In [1], Frasin and Jahangiri introduced the class B (µ, α) defined as follows.
A function f ∈ A is said to be a member of the class B (µ, α) if and only if∣∣∣∣f ′(z)( z

f(z)

)µ
− 1

∣∣∣∣ < 1− α (1)

(z ∈ U; 0 ≤ α < 1;µ ≥ 0).
Note that the condition (1) is equivalent to

Re

(
f ′(z)

(
z

f(z)

)µ)
> α

for (z ∈ U; 0 ≤ α < 1;µ ≥ 0). Clearly, B(1, α) = S∗ (α) , B (0, α) = R (α) and
B (2, α) = B (α) the class which has been introduced and studied by Frasin and
Darus [2] (see also [3]). Here, in our present investigation, we introduce two general
families of integral operators:

In(z) =

∫ z

0

n∏
i=1

(
fi(t)

t

)αi−1

Mi (
g′i(t)

)γi dt (2)

αi, γi ∈ C; fi, gi ∈ A, Mi ≥ 1 for all i ∈ {1, 2, ..., n}.

Jn(z) =

∫ z

0

n∏
i=1

(
fi(t)

t

)δi (
egi(t)

)γi
dt (3)

δi, γi ∈ C; fi, gi ∈ A for all i ∈ {1, 2, ..., n}.

Remark 1.1. The operator In(z) was derived by an operator introduced by Pescar
in [5] and studied by Ularu in [6].
In order to prove our main results, we recall the following lemma.
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Lemma 1.1.(General Schwarz Lemma) [4] Let the function f be regular in the
disk UR = {z ∈ C : |z| < R}, with |f(z)| < M for fixed M . If f has one zero with
multiplicity order bigger or equal to m for z = 0, then

|f(z)| ≤ M

Rm
|z|m (z ∈ UR) .

The equality can hold only if

f(z) = eiθ
M

Rm
zm,

where θ is constant.

2.Main Results

Theorem 2.1. Let the functions fi, gi ∈ A for all i ∈ {1, 2, ..., n}. For any given
Mi ≥ 1, Ni ≥ 1 satisfying the conditions

|fi(z)| ≤Mi (z ∈ U) ,

∣∣∣∣z2f ′i(z)f2i (z)
− 1

∣∣∣∣ ≤ 2Mi − 1

Mi
(z ∈ U) (4)

and ∣∣∣∣zg′′i (z)

g′i(z)
− 1

∣∣∣∣ ≤ Ni (z ∈ U) (5)

there exist numbers αi, γi ∈ C such that

λ = 1−
n∑
i=1

[3 |αi − 1|+ |γi| (Ni + 1)]

and
n∑
i=1

[3 |αi − 1|+ |γi| (Ni + 1)] < 1

for all i ∈ {1, 2, ..., n}. In these conditions, the integral operator In(z) defined by (2)
is in K(λ).

Proof. From (2) we obtain

I ′n(z) =

n∏
i=1

(
fi(z)

z

)αi−1

Mi (
g′i(z)

)γi
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and

I ′′n(z) =

n∑
i=1

[
αi − 1

Mi

(
fi(z)

z

)αi−1

Mi
−1(zf ′i(z)− fi(z)

z2

)(
g′i(z)

)γi ] n∏
k=1
k 6=i

(
fk(z)

z

)αk−1

Mk (
g′k(z)

)γk

+
n∑
i=1

[(
fi(z)

z

)αi−1

Mi

γi
(
g′i(z)

)γi−1 g′′i (z)

] n∏
k=1
k 6=i

(
fk(z)

z

)αk−1

Mk (
g′k(z)

)γk .
After the calculus we obtain that

zI ′′n(z)

I ′n(z)
=

n∑
i=1

[
αi − 1

Mi

(
zf ′i(z)

fi(z)
− 1

)
+ γi

zg′′i (z)

g′i(z)

]
. (6)

It follows from (6) that∣∣∣∣zI ′′n(z)

I ′n(z)

∣∣∣∣ ≤ n∑
i=1

[
|αi − 1|
Mi

(∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣+ 1

)
+|γi|

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ]

≤
n∑
i=1

[
|αi − 1|
Mi

((∣∣∣∣z2f ′i(z)f2i (z)
− 1

∣∣∣∣+ 1

) ∣∣∣∣fi(z)z

∣∣∣∣+ 1

)
+ |γi|

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ]. (7)

From the hypothesis (4) of Theorem 2.1., we have

|fi(z)| ≤Mi (z ∈ U) and

∣∣∣∣z2f ′i(z)f2i (z)
− 1

∣∣∣∣ ≤ 2Mi − 1

Mi
(z ∈ U)

for all i ∈ {1, 2, ..., n}. By applying the General Schwarz Lemma, we thus obtain

|fi(z)| ≤Mi |z| (z ∈ U; i ∈ {1, 2, ..., n}) .

Using the condition (5) and from the inequality (7), we obtain∣∣∣∣zI ′′n(z)

I ′n(z)

∣∣∣∣ ≤ n∑
i=1

[
3 |αi − 1|+|γi|

(∣∣∣∣zg′′i (z)

g′i(z)
− 1

∣∣∣∣+ 1

)]

≤
n∑
i=1

(3 |αi − 1|+ |γi| (Ni + 1))

= 1− λ
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which implies that In(z) ∈ K(λ).

Setting α1 = α2 = ... = αn = 1 in Theorem 2.1., we have

Corollary 2.2. Let the functions gi ∈ A for all i ∈ {1, 2, ..., n}. For any given
Ni ≥ 1 satisfying the condition∣∣∣∣zg′′i (z)

g′i(z)
− 1

∣∣∣∣ ≤ Ni (z ∈ U)

there exist γi ∈ C such that

λ = 1−
n∑
i=1

|γi| (Ni + 1)

and
n∑
i=1

|γi| (Ni + 1) < 1

for all i ∈ {1, 2, ..., n}. In these conditions, the integral operator

I(g1, ..., gn)(z) =

∫ z

0

n∏
i=1

(
g′i(t)

)γi dt
is in K(λ).

Setting n = 1 in Theorem 2.1., we have

Corollary 2.3. Let the functions f, g ∈ A. For any given M ≥ 1 and N ≥ 1
satisfying the conditions

|f(z)| ≤M (z ∈ U) ,

∣∣∣∣z2f ′(z)f2(z)
− 1

∣∣∣∣ ≤ 2M − 1

M
(z ∈ U)

and ∣∣∣∣zg′′(z)g′(z)
− 1

∣∣∣∣ ≤ N (z ∈ U)

there exist numbers α, γ ∈ C such that

λ = 1− [3 |α− 1|+ |γ| (N + 1)]

and
[3 |α− 1|+ |γ| (N + 1)] < 1.
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In these conditions, the integral operator

I(z) =

∫ z

0

(
f(t)

t

)α−1
M (

g′(t)
)γ
dt

is in K(λ).

Setting M = 1 and N = 1 in Corollary 2.3., we have

Corollary 2.4. Let the functions f, g ∈ A. If

|f(z)| ≤ 1 (z ∈ U) ,

∣∣∣∣z2f ′(z)f2(z)
− 1

∣∣∣∣ ≤ 1 (z ∈ U)

and ∣∣∣∣zg′′(z)g′(z)
− 1

∣∣∣∣ ≤ 1 (z ∈ U)

there exist numbers α, γ ∈ C such that

λ = 1− [3 |α− 1|+ 2 |γ|]

and
[3 |α− 1|+ 2 |γ|] < 1.

Then the integral operator

I(z) =

∫ z

0

(
f(t)

t

)α−1 (
g′(t)

)γ
dt

is in K(λ).

Theorem 2.5. Let the functions fi, gi ∈ A, where gi be in the class B(µi, αi),
µi ≥ 0, 0 ≤ αi < 1 for all i ∈ {1, 2, ..., n}. For any given µi ≥ 0, 0 ≤ αi < 1, Mi ≥ 1
and Ni ≥ 1 satisfying the conditions∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣ ≤Mi (z ∈ U) and |gi(z)| ≤ Ni (z ∈ U)

there exist numbers δi, γi ∈ C such that

λ = 1−
n∑
i=1

[|δi| (Mi + 1) + |γi| (2− αi)Ni
µi ]
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and
n∑
i=1

[|δi| (Mi + 1) + |γi| (2− αi)Ni
µi ] < 1

for all i ∈ {1, 2, ..., n}. In these conditions, the integral operator Jn(z) defined by (3)
is in K (λ) .

Proof. If we make the similar operations to the proof of Theorem 2.1., we have

zJ ′′n(z)

J ′n(z)
=

n∑
i=1

[
δi

(
zf ′i(z)

fi(z)
− 1

)
+ γizg

′
i(z)

]
. (8)

From the relation (8), we obtain that∣∣∣∣zJ ′′n(z)

J ′n(z)

∣∣∣∣ ≤ n∑
i=1

[
|δi|
(∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣+ 1

)
+|γi|

∣∣zg′i(z)∣∣ ]

≤
n∑
i=1

[
|δi|
(∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣+ 1

)
+ |γi|

∣∣∣∣g′i(z)( z

gi(z)

)µi∣∣∣∣ ∣∣∣∣gi(z)z

∣∣∣∣µi |z| ]. (9)

Since ∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣ ≤Mi (z ∈ U) and |gi(z)| ≤ Ni (z ∈ U)

and applying the General Schwarz Lemma for the functions gi (i ∈ {1, 2, ..., n}) , we
obtain

|gi(z)| ≤ Ni |z| (z ∈ U) . (10)

Because gi ∈ B(µi, αi), µi ≥ 0, 0 ≤ αi < 1 we apply in the relation (9) the inequality
(10) and we obtain∣∣∣∣zJ ′′n(z)

J ′n(z))

∣∣∣∣ ≤ n∑
i=1

[
|δi| (Mi + 1) + |γi|

∣∣∣∣g′i(z)( z

gi(z)

)µi∣∣∣∣Ni
µi

]
. (11)

From (11) and (1) we obtain∣∣∣∣zJ ′′n(z)

J ′n(z)

∣∣∣∣ ≤ n∑
i=1

[
|δi| (Mi + 1)+|γi|

(∣∣∣∣g′i(z)( z

gi(z)

)µi
− 1

∣∣∣∣+ 1

)
Ni

µi

]

≤
n∑
i=1

(|δi| (Mi + 1) + |γi| (2− αi)Ni
µi)
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= 1− λ

which implies that Jn(z) ∈ K(λ).

Setting µ1 = µ2 = ... = µn = 0, M1 = M2 = ... = Mn = M = 1 and N1 = N2 =
... = Nn = N = 1 in Theorem 2.5., we obtain

Corollary 2.6. Let the functions fi, gi ∈ A, where gi be in the class R(αi),
0 ≤ αi < 1 for all i ∈ {1, 2, ..., n}. For any given 0 ≤ αi < 1 satisfying the conditions∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣ ≤ 1 (z ∈ U) and |gi(z)| ≤ 1 (z ∈ U)

there exist numbers δi, γi ∈ C such that

λ = 1−
n∑
i=1

[2 |δi|+ |γi| (2− αi)]

and
n∑
i=1

[2 |δi|+ |γi| (2− αi)] < 1

for all i ∈ {1, 2, ..., n}. In these conditions, the integral operator Jn(z) defined by (3)
is in K (λ) .

Setting µ1 = µ2 = ... = µn = 1, M1 = M2 = ... = Mn = M and N1 = N2 = ... =
Nn = N in Theorem 2.5., we obtain

Corollary 2.7. Let the functions fi, gi ∈ A, where gi be in the class S∗(αi),
0 ≤ αi < 1 for all i ∈ {1, 2, ..., n}. For any given 0 ≤ αi < 1, M ≥ 1 and N ≥ 1
satisfying the conditions∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣ ≤M (z ∈ U) and |gi(z)| ≤ N (z ∈ U)

there exist δi, γi ∈ C such that

λ = 1−
n∑
i=1

(|δi| (M + 1) + |γi| (2− αi)N)

and
n∑
i=1

(|δi| (M + 1) + |γi| (2− αi)N) < 1
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for all i ∈ {1, 2, ..., n}. Then the integral operator Jn(z) defined by (3) is in K (λ) .

Setting n = 1 in Theorem 2.5., we obtain

Corollary 2.8. Let the functions f, g ∈ A, where g be in the class B(µ, α),
µ ≥ 0, 0 ≤ α < 1. For any given µ ≥ 0, 0 ≤ α < 1, M ≥ 1 and N ≥ 1 satisfying the
conditions ∣∣∣∣zf ′(z)f(z)

∣∣∣∣ ≤M (z ∈ U) and |g(z)| ≤ N (z ∈ U)

there exist numbers δ, γ ∈ C such that

λ = 1− [|δ| (M + 1) + |γ| (2− α)Nµ]

and
[|δ| (M + 1) + |γ| (2− α)Nµ] < 1.

In these conditions, the integral operator

J(z) =

∫ z

0

(
f(t)

t

)δ (
eg(t)

)γ
dt

is in K (λ) .
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