ON PRE-*I*-OPEN SETS, SEMI-*I*-OPEN SETS AND *b*-*I*-OPEN SETS IN IDEAL TOPOLOGICAL SPACES¹

Erdal Ekici

ABSTRACT. The aim of this paper is to investigate some properties of pre-*I*-open sets, semi-*I*-open sets and *b*-*I*-open sets in ideal topological spaces. Some relationships of pre-*I*-open sets, semi-*I*-open sets and *b*-*I*-open sets in ideal topological spaces are discussed. Moreover, decompositions of continuity are provided.

2000 Mathematics Subject Classification: 54A05, 54A10, 54C08, 54C10.

1. INTRODUCTION

Pre-*I*-open sets, semi-*I*-open sets and *b*-*I*-open sets in ideal topological spaces were studied by [3], [9] and [8], respectively. In this paper, some properties of pre-*I*-open sets, semi-*I*-open sets and *b*-*I*-open sets in ideal topological spaces are investigated. Some relationships of pre-*I*-open sets, semi-*I*-open sets and *b*-*I*-open sets in ideal topological spaces are discussed. Furthermore, decompositions of continuous functions are established.

Throughout this paper, (X, τ) or (Y, σ) will denote a topological space with no separation properties assumed. Cl(V) and Int(V) will denote the closure and the interior of V in X, respectively for a subset V of a topological space (X, τ) . An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

(1) $V \in I$ and $U \subset V$ implies $U \in I$,

(2) $V \in I$ and $U \in I$ implies $V \cup U \in I$ [13].

For an ideal I on (X, τ) , (X, τ, I) is called an ideal topological space or simply an ideal space. Given a topological space (X, τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator $(.)^* : P(X) \to P(X)$, called a local function

¹This paper is supported by Canakkale Onsekiz Mart University, BAP: 2010/179.

[13] of K with respect to τ and I is defined as follows: for $K \subset X$, $K^*(I, \tau) = \{x \in X : U \cap K \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ , is defined by $Cl^*(K) = K \cup K^*(I, \tau)$ [11]. We will simply write K^* for $K^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$.

Definition 1. A subset V of an ideal topological space (X, τ, I) is said to be (1) pre-I-open [3] if $V \subset Int(Cl^*(V))$.

(2) semi-I-open [9] if $V \subset Cl^*(Int(V))$.

(3) α -*I*-open [9] if $V \subset Int(Cl^*(Int(V)))$.

(4) *b*-*I*-open [8] if $V \subset Int(Cl^{*}(V)) \cup Cl^{*}(Int(V))$.

(5) weakly I-local closed [12] if $V = U \cap K$, where U is an open set and K is a \star -closed set in X.

(6) locally closed [2] if $V = U \cap K$, where U is an open set and K is a closed set in X.

The complement of a pre-*I*-open (resp. semi-*I*-open, *b*-*I*-open, α -*I*-open) set is called pre-*I*-closed (resp. semi-*I*-closed, *b*-*I*-closed, α -*I*-closed). A subset *V* of an ideal topological space (X, τ, I) is said to be a \mathcal{BC}_I -set [5] if $V = U \cap K$, where *U* is an open set and *K* is a *b*-*I*-closed set in *X*. The *b*-*I*-interior of *V*, denoted by $b_I Int(V)$, is defined by the union of all *b*-*I*-open sets contained in *V* [1]. For a subset *V* of an ideal topological space (X, τ, I) , the intersection of all *b*-*I*-closed (resp. pre-*I*-closed, semi-*I*-closed) sets containing *V* is called the *b*-*I*-closure [1] (resp. pre-*I*-closure [4], semi-*I*-closure [4]) of *V* and is denoted by $b_I Cl(V)$ (resp. $p_I Cl(V)$, $s_I Cl(V)$). For a subset *V* of an ideal topological space (X, τ, I) , $p_I Cl(V) = V \cup Cl(Int^*(V))$ [4] and $s_I Cl(V) = V \cup Int^*(Cl(V))$ [4]. For a subset *V* of an ideal topological space (X, τ, I) , the pre-*I*-interior (resp. semi-*I*-interior [4]) of *V*, denoted by $p_I Int(V)$ (resp. $s_I Int(V)$), is defined by the union of all pre-*I*-open (resp. semi-*I*-open) sets contained in *V*.

Corollary 2. Let (X, τ, I) be an ideal topological space and $V \subset X$. Then, $p_I Int(V) = V \cap Int(Cl^*(V))$ and $s_I Int(V) = V \cap Cl^*(Int(V))$.

Lemma 3. ([10]) Let V be a subset of an ideal topological space (X, τ, I) . If $G \in \tau$, then $G \cap Cl^*(V) \subset Cl^*(G \cap V)$.

Lemma 4. ([14]) A subset V of an ideal space (X, τ, I) is a weakly I-local closed set if and only if there exists $K \in \tau$ such that $V = K \cap Cl^*(V)$.

Theorem 5. ([5]) For a subset V of an ideal topological space (X, τ, I) , V is a \mathcal{BC}_I -set if and only if $V = K \cap b_I Cl(V)$ for an open set K in X.

Definition 6. ([6]) An ideal topological space (X, τ, I) is said to be \star -extremally disconnected if the \star -closure of every open subset V of X is open.

Theorem 7. ([6]) For an ideal topological space (X, τ, I) , the following properties are equivalent:

(1) X is \star -extremally disconnected,

(2) $Cl^*(Int(V)) \subset Int(Cl^*(V))$ for every subset V of X.

2. Pre-I-OPEN SETS, SEMI-I-OPEN SETS AND *b*-I-OPEN SETS IN IDEAL TOPOLOGICAL SPACES

Theorem 8. Let (X, τ, I) be a \star -extremally disconnected ideal space and $V \subset X$, the following properties are equivalent:

(1) V is an open set,

(2) V is α -I-open and weakly I-local closed,

(3) V is pre-I-open and weakly I-local closed,

(4) V is semi-I-open and weakly I-local closed,

(5) V is b-I-open and weakly I-local closed.

Proof. (1) \Rightarrow (2) : It follows from the fact that every open set is α -I-open and weakly I-local closed.

 $(2) \Rightarrow (3), (2) \Rightarrow (4), (3) \Rightarrow (5) and (4) \Rightarrow (5) : Obvious.$

 $(5) \Rightarrow (1)$: Suppose that V is a b-I-open set and a weakly I-local closed set in X. It follows that $V \subset Cl^*(Int(V)) \cup Int(Cl^*(V))$. Since V is a weakly I-local closed set, then there exists an open set G such that $V = G \cap Cl^*(V)$. It follows from Theorem 7 that

$$\begin{split} V &\subset G \cap (Cl^*(Int(V)) \cup Int(Cl^*(V))) \\ &= (G \cap Cl^*(Int(V))) \cup (G \cap Int(Cl^*(V))) \\ &\subset (G \cap Int(Cl^*(V)) \cup (G \cap Int(Cl^*(V))) \\ &= Int(G \cap Cl^*(V)) \cup Int(G \cap Cl^*(V)) \\ &= Int(V) \cup Int(V) \\ &= Int(V). \end{split}$$

Thus, $V \subset Int(V)$ and hence V is an open set in X.

Theorem 9. Let (X, τ, I) be a \star -extremally disconnected ideal space and $V \subset X$, the following properties are equivalent:

(1) V is an open set,

(2) V is α -I-open and a locally closed set.

(3) V is pre-I-open and a locally closed set.

- (4) V is semi-I-open and a locally closed set.
- (5) V is b-I-open and a locally closed set.

Proof. By Theorem 8, It follows from the fact that every open set is locally closed and every locally closed set is weakly I-local closed.

Theorem 10. The following properties hold for a subset V of an ideal topological space (X, τ, I) :

(1) If V is a pre-I-open set, then $s_I Cl(V) = Int^*(Cl(V))$.

(2) If V is a semi-I-open set, then $p_I Cl(V) = Cl(Int^*(V))$.

Proof. (1) : Suppose that V is a pre-I-open set in X. Then we have $V \subset Int(Cl^*(V)) \subset Int^*(Cl(V))$. This implies

$$s_I Cl(V) = V \cup Int^*(Cl(V)) = Int^*(Cl(V)).$$

(2) : Let V be a semi-I-open set in X. It follows that $V \subset Cl^*(Int(V)) \subset Cl(Int^*(V))$. Thus, we have

$$p_I Cl(V) = V \cup Cl(Int^*(V)) = Cl(Int^*(V)).$$

Remark 11. The reverse implications of Theorem 10 are not true in general as shown in the following example:

Example 12. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then $s_I Cl(A) = Int^*(Cl(A))$ for the subset $A = \{b, d\}$ but A is not pre-I-open. Moreover, $p_I Cl(B) = Cl(Int^*(B))$ for the subset $B = \{a, d\}$ but B is not semi-I-open.

Theorem 13. Let (X, τ, I) be an ideal topological space and $V \subset X$, the following properties hold:

(1) If V is a pre-I-closed set, then $s_I Int(V) = Cl^*(Int(V))$.

(2) If V is a semi-I-closed set, then $p_I Int(V) = Int(Cl^*(V))$.

Proof. (1): Let V be a pre-I-closed set. Then $Cl^*(Int(V)) \subset Cl(Int^*(V)) \subset V$. This implies that $s_IInt(V) = V \cap Cl^*(Int(V)) = Cl^*(Int(V))$.

(2): Suppose that V is a semi-I-closed set. We have $Int(Cl^*(V)) \subset Int^*(Cl(V)) \subset V$. Hence, $p_IInt(V) = V \cap Int(Cl^*(V)) = Int(Cl^*(V))$.

Theorem 14. For a subset K of an ideal topological space (X, τ, I) , K is a b-I-closed set if and only if $K = p_I Cl(K) \cap s_I Cl(K)$.

Proof. (⇒) : Suppose that K is a b-I-closed set in X. This implies $Int^*(Cl(K)) \cap Cl(Int^*(K)) \subset K$. We have

$$p_I Cl(K) \cap s_I Cl(K) = (K \cup Cl(Int^*(K))) \cap (K \cup Int^*(Cl(K)))$$

= K \cup (Cl(Int^*(K)) \cap Int^*(Cl(K)))
= K.

Thus, $K = p_I Cl(K) \cap s_I Cl(K)$. (\Leftarrow): Let $K = p_I Cl(K) \cap s_I Cl(K)$. Then we have

$$K = p_I Cl(K) \cap s_I Cl(K)$$

= $(K \cup Cl(Int^*(K))) \cap (K \cup Int^*(Cl(K)))$
 $\supset Cl(Int^*(K)) \cap Int^*(Cl(K)).$

This implies $Cl(Int^*(K)) \cap Int^*(Cl(K)) \subset K$. Thus, K is a b-I-closed set in X.

Theorem 15. Let (X, τ, I) be an ideal topological space and $V \subset X$. If V is pre-I-open and semi-I-open, then $b_I Cl(V) = Cl(Int^*(V)) \cap Int^*(Cl(V))$.

Proof. Suppose that V is a pre-I-open set and a semi-I-open set in X. By Theorem 10, we have $p_I Cl(V) = Cl(Int^*(V))$ and $s_I Cl(V) = Int^*(Cl(V))$. Since $b_I Cl(V) \subset p_I Cl(V) \cap s_I Cl(V)$ and $b_I Cl(V)$ is b-I-closed, then we have

$$b_I Cl(V) \supset Cl(Int^*(b_I Cl(V))) \cap Int^*(Cl(b_I Cl(V))) \\ \supset Cl(Int^*(V)) \cap Int^*(Cl(V)).$$

It follows that

$$p_I Cl(V) \cap s_I Cl(V) = (V \cup Cl(Int^*(V))) \cap (V \cup Int^*(Cl(V))) \\ \subset b_I Cl(V).$$

Consequently, we have, $b_I Cl(V) = p_I Cl(V) \cap s_I Cl(V)$. This implies that $b_I Cl(V) = p_I Cl(V) \cap s_I Cl(V) = Cl(Int^*(V)) \cap Int^*(Cl(V))$.

Remark 16. The reverse implication of Theorem 15 is not true in general as shown in the following example:

Example 17. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Take $A = \{b, c, d\}$. Then $b_I Cl(A) = Cl(Int^*(A)) \cap Int^*(Cl(A))$ but A is not pre-*I*-open.

Theorem 18. Let (X, τ, I) be an ideal topological space and $V \subset X$. If V is pre-I-closed and semi-I-closed, then $b_I Int(V) = Cl^*(Int(V)) \cup Int(Cl^*(V))$.

Proof. Suppose that V is a pre-I-closed set and a semi-I-closed set. By Theorem 13, we have $s_I Int(V) = Cl^*(Int(V))$ and $p_I Int(V) = Int(Cl^*(V))$. Thus, $b_I Int(V) = p_I Int(V) \cup s_I Int(V) = Int(Cl^*(V)) \cup Cl^*(Int(V))$.

Theorem 19. For a subset V of an ideal topological space (X, τ, I) , the following properties hold:

(1) $b_I Cl(Int(V)) = Int^*(Cl(Int(V))).$ (2) $Int(s_I Cl(V)) = Int(Cl(V)).$ (3) $Cl(p_I Int(V)) = Cl(Int(Cl^*(V))).$

Proof. (1): We have

 $b_I Cl(Int(V)) = p_I Cl(Int(V)) \cap s_I Cl(Int(V))$ = $(Int(V) \cup Cl(Int^*(Int(V)))) \cap (Int(V) \cup Int^*(Cl(Int(V))))$ = $Cl(Int^*(Int(V))) \cap Int^*(Cl(Int(V)))$ = $Cl(Int(V)) \cap Int^*(Cl(Int(V)))$ = $Int^*(Cl(Int(V))).$

Hence, $b_I Cl(Int(V)) = Int^*(Cl(Int(V))).$

(2): We have

 $Int(s_{I}Cl(V)) = Int(V \cup Int^{*}(Cl(V)))$ $\supset Int(V) \cup Int(Int^{*}(Cl(V)))$ $\supset Int(V) \cup Int(Int(Cl(V)))$ $= Int(V) \cup Int(Cl(V))$ = Int(Cl(V)).

Conversely,

 $Int(s_{I}Cl(V)) = Int(V \cup Int^{*}(Cl(V)))$ $\subset Int(Cl(V) \cup Int^{*}(Cl(V)))$ = Int(Cl(V)).

This implies $Int(s_I Cl(V)) = Int(Cl(V))$. (3): We have

): we have

 $Cl(p_I Int(V)) = Cl(V \cap Int(Cl^*(V)))$ $\supset Cl(V) \cap Int(Cl^*(V)))$ $= Int(Cl^*(V)).$

Thus, we have $Cl(p_I Int(V)) \supset Cl(Int(Cl^*(V)))$.

Conversely, we have

 $Cl(p_I Int(V)) = Cl(V \cap Int(Cl^*(V)))$ $\subset Cl(V) \cap Cl(Int(Cl^*(V)))$ $= Cl(Int(Cl^*(V))).$

Hence, $Cl(p_I Int(V)) = Cl(Int(Cl^*(V))).$

Corollary 20. For a subset V of an ideal topological space (X, τ, I) , the following properties hold:

(1) $b_I Int(Cl(V)) = Cl^*(Int(Cl(V))).$ (2) $Cl(s_I Int(V)) = Cl(Int(V)).$ (3) $Int(p_I Cl(V)) = Int(Cl(Int^*(V))).$

Proof. It follows from Theorem 19.

Theorem 21. For a subset V of an ideal topological space (X, τ, I) , the following properties hold:

(1) $Int(b_I Cl(V)) = Int(Cl(Int^*(V))).$ (2) $Cl(b_I Int(V)) = Cl(Int(Cl^*(V))).$

Proof. (1): We have

$$Int(b_ICl(V)) = Int(p_ICl(V) \cap s_ICl(V)) = Int(p_ICl(V)) \cap Int(s_ICl(V)) = Int(p_ICl(V)) \cap Int(Cl(V)) = Int(p_ICl(V)) \cap Int(Cl(V)) = Int(Cl(Int^*(V))).$$

by Theorem 19. Thus, $Int(b_I Cl(V)) = Int(Cl(Int^*(V)))$. (2): It follows from (1).

Theorem 22. For a subset V of an ideal topological space (X, τ, I) , the following properties hold:

 $(1) p_I Cl(s_I Int(V)) \subset Cl(Int^*(V)).$ $(2) s_I Int(s_I Cl(V)) = s_I Cl(V) \cap Cl^*(Int(Cl(V))).$ $(3) p_I Int(s_I Cl(V)) \supset Int(Cl^*(V)).$ $(4) s_I Cl(s_I Int(V)) = s_I Int(V) \cup Int^*(Cl(Int(V))).$

Proof. (1): By Theorem 10, we have

$$p_I Cl(s_I Int(V)) = Cl(Int^*(s_I Int(V))) \subset Cl(Int^*(V)).$$

This implies $p_I Cl(s_I Int(V)) \subset Cl(Int^*(V))$. (2): By Theorem 19, we have

 $s_I Int(s_I Cl(V)) = s_I Cl(V) \cap Cl^*(Int(s_I Cl(V))) = s_I Cl(V) \cap Cl^*(Int(Cl(V))).$

Hence, $s_I Int(s_I Cl(V)) = s_I Cl(V) \cap Cl^*(Int(Cl(V)))$. (3) and (4) follow from (1) and (2), respectively.

Theorem 23. For a subset V of an ideal topological space (X, τ, I) , the following properties hold:

(1) $b_I Cl(s_I Int(V)) \subset s_I Int(V) \cup Int^*(Cl(Int(V))).$ (2) $p_I Int(b_I Cl(V)) \supset p_I Cl(V) \cap Int(Cl^*(V)).$ (3) $s_I Int(b_I Cl(V)) \supset s_I Cl(V) \cap Cl^*(Int(V)).$

Proof. (1): By Theorem 22 and Corollary 20, we have

 $b_I Cl(s_I Int(V)) = p_I Cl(s_I Int(V)) \cap s_I Cl(s_I Int(V))$ $\subset Cl(Int^*(V)) \cap (s_I Int(V) \cup Int^*(Cl(s_I Int(V))))$ $= Cl(Int^*(V)) \cap (s_I Int(V) \cup Int^*(Cl(Int(V))))$ $= s_I Int(V) \cup (Cl(Int^*(V)) \cap Int^*(Cl(Int(V))))$ $= s_I Int(V) \cup Int^*(Cl(Int(V))).$

Thus, $b_I Cl(s_I Int(V)) \subset s_I Int(V) \cup Int^*(Cl(Int(V))).$ (2): We have

$$\begin{split} p_I Int(b_I Cl(V)) &= p_I Int(p_I Cl(V) \cap s_I Cl(V)) \\ &= p_I Cl(V) \cap s_I Cl(V) \cap Int(Cl^*(p_I Cl(V) \cap s_I Cl(V))) \\ &\supset p_I Cl(V) \cap Int^*(Cl(V)) \cap s_I Cl(V) \cap Int(Cl^*(p_I Cl(V) \cap s_I Cl(V))) \\ &= p_I Cl(V) \cap Int^*(Cl(V)) \cap Int(Cl^*(p_I Cl(V) \cap s_I Cl(V))) \\ &= p_I Cl(V) \cap Int^*(Cl(V)) \cap Int(Cl^*(b_I Cl(V))) \\ &\supset p_I Cl(V) \cap Int(Cl^*(V)) \cap Int(Cl^*(b_I Cl(V))) \\ &= p_I Cl(V) \cap Int(Cl^*(V)). \end{split}$$

This implies $p_I Int(b_I Cl(V)) \supset p_I Cl(V) \cap Int(Cl^*(V))$.

(3): We have

$$\begin{split} s_I Int(b_I Cl(V)) &= s_I Int(p_I Cl(V) \cap s_I Cl(V)) \\ &= p_I Cl(V) \cap s_I Cl(V) \cap Cl^* (Int(p_I Cl(V) \cap s_I Cl(V))) \\ &\supset p_I Cl(V) \cap Cl(Int^*(V)) \cap s_I Cl(V) \cap Cl^* (Int(p_I Cl(V) \cap s_I Cl(V))) \\ &= Cl(Int^*(V)) \cap s_I Cl(V) \cap Cl^* (Int(p_I Cl(V) \cap s_I Cl(V))) \\ &\supset Cl^* (Int(V)) \cap s_I Cl(V) \cap Cl^* (Int(p_I Cl(V) \cap s_I Cl(V))) \\ &= s_I Cl(V) \cap Cl^* (Int(V)). \end{split}$$

Thus, $s_I Int(b_I Cl(V)) \supset s_I Cl(V) \cap Cl^*(Int(V))$.

Corollary 24. For a subset V of an ideal topological space (X, τ, I) , the following properties hold:

(1) $b_I Int(s_I Cl(V)) \supset s_I Cl(V) \cap Cl^*(Int(Cl(V))).$ (2) $p_I Cl(b_I Int(V)) \subset p_I Int(V) \cup Cl(Int^*(V)).$ (3) $s_I Cl(b_I Int(V)) \subset s_I Int(V) \cup Int^*(Cl(V)).$

Proof. It follows from Theorem 23.

3. Decompositions of continuous functions and further properties

Definition 25. A function $f : (X, \tau, I) \to (Y, \sigma)$ is called α -*I*-continuous [9] (rep. pre-*I*-continuous [3], semi-*I*-continuous [9], b-*I*-continuous [8], W_ILCcontinuous [12], LC-continuous [7]) if $f^{-1}(K)$ is α -*I*-open (rep. pre-*I*-open, semi-*I*-open, b-*I*-open, weakly *I*-local closed, locally closed) for each open set K in Y.

Theorem 26. For a function $f : (X, \tau, I) \to (Y, \sigma)$, where (X, τ, I) is a \star -extremally disconnected ideal space, the following properties are equivalent:

(1) f is continuous,

(2) f is α -I-continuous and W_ILC -continuous,

(3) f is pre-I-continuous and W_ILC -continuous,

(4) f is semi-I-continuous and W_ILC -continuous,

(5) f is b-I-continuous and W_ILC -continuous.

Proof. It follows from Theorem 8.

Theorem 27. For a function $f : (X, \tau, I) \to (Y, \sigma)$, where (X, τ, I) is a \star -extremally disconnected ideal space, the following properties are equivalent:

(1) f is continuous,

(2) f is α -I-continuous and LC-continuous,

(3) f is pre-I-continuous and LC-continuous,

(4) f is semi-I-continuous and LC-continuous,

(5) f is b-I-continuous and LC-continuous.

Proof. It follows from Theorem 9.

Definition 28. A subset V of an ideal topological space (X, τ, I) is said to be (1) generalized b-I-open (gb_I-open) if $K \subset b_I Int(V)$ whenever $K \subset V$ and K is a closed set in X.

(2) generalized b-I-closed (gb_I -closed) if $X \setminus V$ is a gb_I -open in X.

Theorem 29. Let (X, τ, I) be an ideal topological space and $V \subset X$. Then V is a gb_I -closed set if and only if $b_I Cl(V) \subset G$ whenever $V \subset G$ and G is an open set in X.

Proof. Let V be a gb_I -closed set in X. Suppose that $V \subset G$ and G is an open set in X. This implies that $X \setminus V$ is a gb_I -open set and $X \setminus G \subset X \setminus V$ where $X \setminus G$ is a closed set. Since $X \setminus V$ is a gb_I -open set, then $X \setminus G \subset b_I Int(X \setminus V)$. Since $b_I Int(X \setminus V) = X \setminus b_I Cl(V)$, then we have $b_I Cl(V) = X \setminus b_I Int(X \setminus V) \subset G$. Thus, $b_I Cl(V) \subset G$. The converse is similar.

Theorem 30. Let (X, τ, I) be an ideal topological space and $V \subset X$. Then V is a b-I-closed set if and only if V is a \mathcal{BC}_I -set and a gb_I -closed set in X.

Proof. It follows from the fact that any b-I-closed set is a \mathcal{BC}_I -set and a gb_I -closed.

Conversely, let V be a \mathcal{BC}_I -set and a gb_I -closed set in X. By Theorem 5, $V = G \cap b_I Cl(V)$ for an open set G in X. Since $V \subset G$ and V is gb_I -closed, then we have $b_I Cl(V) \subset G$. Thus, $b_I Cl(V) \subset G \cap b_I Cl(V) = V$ and hence V is b-I-closed.

Theorem 31. For a subset V of an ideal topological space (X, τ, I) , if V is a \mathcal{BC}_I -set in X, then $b_I Cl(V) \setminus V$ is a b-I-closed set and $V \cup (X \setminus b_I Cl(V))$ is a b-I-open set in X.

Proof. Suppose that V is a \mathcal{BC}_I -set in X. By Theorem 5, we have $V = G \cap b_I Cl(V)$ for an open set G. This implies

$$b_I Cl(V) \setminus V = b_I Cl(V) \setminus (G \cap b_I Cl(V))$$

= $b_I Cl(V) \cap (X \setminus (G \cap b_I Cl(V)))$
= $b_I Cl(V) \cap ((X \setminus G) \cup (X \setminus b_I Cl(V)))$
= $(b_I Cl(V) \cap (X \setminus G)) \cup (b_I Cl(V) \cap (X \setminus b_I Cl(V)))$
= $b_I Cl(V) \cap (X \setminus G).$

Consequently, $b_I Cl(V) \setminus V$ is b-I-closed. On the other hand, since $b_I Cl(V) \setminus V$ is a b-I-closed set, then $X \setminus (b_I Cl(V) \setminus V)$ is a b-I-open set. Since $X \setminus (b_I Cl(V) \setminus V) = X \setminus (b_I Cl(V) \cap (X \setminus V)) = (X \setminus b_I Cl(V)) \cup V$, then $V \cup (X \setminus b_I Cl(V))$ is a b-I-open set.

References

[1] M. Akdag, On b-I-open sets and b-I-continuous functions, Int. J. Math. Math. Sci, Volume 2007, ID 75721, 1-13.

[2] N. Bourbaki, General Topology, Part I, Addison Wesley, Reading, Mass 1966.

[3] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, arxiv:math. GN/9901017v1 (1999).

[4] E. Ekici and T. Noiri, *-hyperconnected ideal topological spaces, Analele Stiin. Ale Univ. A. I. Cuza Din Iasi-Serie Noua-Mat., in press.

[5] E. Ekici, On \mathcal{AC}_I -sets, \mathcal{BC}_I -sets, β_I^* -open sets and decompositions of continuity in ideal topological spaces, Creative Mathematics and Informatics, 20 (1) (2011), 47-54.

[6] E. Ekici and T. Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., 122 (1-2) (2009), 81-90.

[7] M. Ganster and I. L. Reilly, *Locally closed sets and LC-continuous functions*, Internat. J. Math. Math. Sci., 12 (3) (1989), 417-424.

[8] A. C. Guler and G. Aslim, *b-I-open sets and decomposition of continuity via idealization*, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 22 (2005), 27-32.

[9] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 341-349.

[10] E. Hatir, A. Keskin, and T. Noiri, A note on strong β -I-sets and strongly β -I-continuous functions, Acta Math. Hungar., 108 (2005), 87-94.

[11] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.

[12] A. Keskin, T. Noiri and S. Yuksel, *Decompositions of I-continuity and continuity*, Commun. Fac. Sci. Univ. Ankara Series A1, 53 (2004), 67-75.

[13] K. Kuratowski, Topology, Vol. I, Academic Press, NewYork, 1966.

[14] E. G. Yang, Around decompositions of continuity via idealization, Q. and A. in General Topology, 26 (2008), 131-138.

Erdal Ekici

Department of Mathematics,

Canakkale Onsekiz Mart University,

Terzioglu Campus,

17020 Canakkale, TURKEY

E-mail: eekici@comu.edu.tr