SUBCLASSES OF P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

M.K.Aouf

Abstract. In this paper we introduce two subclasses $T^{*}(A, B, \alpha, p, j)$ and $C(A, B, \alpha, p, j)$ of analytic and p - valent functions with negative coefficients. We obtain coefficient estimates, distortion theorems, extreme points and radii of close - to convexity, starlikeness and convexity of order $\phi(0 \leq \phi<p)$ for these classes. We also obtain integral operators for these classes. Furthermore, several results for the modified Hadamard products of functions belonging to the classes $T^{*}(A, B, \alpha, p, j)$ and $C(A, B, \alpha, p, j)$ are also given.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

Let $S(p)$ denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad(p \in N=\{1,2, \ldots\}), \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $U=\{z: z \in C$ and $|z|<1\}$. Let the functions $f(z)$ and $g(z)$ be analytic in U. Then the function $f(z)$ is said to be subordinate to $g(z)$ if there exists a function $w(z)$ analytic in U, with $w(0)=0$ and $|w(z)|<1(z \in U)$, such that $f(z)=g(w(z))(z \in U)$. We denote this subordination by $f(z) \prec g(z)$.

For A, B fixed, $-1 \leq A<B \leq 1,0<B \leq 1,0 \leq \alpha<p-j+1,1 \leq j \leq p$ and $p \in N$, we say that $f(z) \in A(p)$ is in the class $S^{*}(A, B, \alpha, p, j)$ if it satisfies the following subordination condition:

$$
\begin{equation*}
\frac{z f^{(j)}(z)}{f^{(j-1)}(z)} \prec \frac{p-j+1+[(p-j+1) B+(A-B)(p-j+1-\alpha)] z}{1+B z}(z \in U), \tag{1.2}
\end{equation*}
$$

or, equivalently, $f(z) \in S^{*}(A, B, \alpha, p, j)$ if and only if

$$
\begin{equation*}
\left|\frac{\frac{z f^{(j)}(z)}{f^{(j-1)}(z)}-(p-j+1)}{B \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}-[(p-j+1) B+(A-B)(p-j+1-\alpha)]}\right|<1 \quad(z \in U) . \tag{1.3}
\end{equation*}
$$

Further $f(z) \in A(p)$ is said to belong to the class $K(A, B, \alpha, p, j)$ if and only if $\frac{z f^{(j)}(z)}{p-j+1} \in S^{*}(A, B, \alpha, p, j)$.

We note that:
(i) $S^{*}(A, B, 0, p, j)=H_{p, j}^{0}(A, B), \quad K(A, B, 0, p, j)=H_{p, j}^{1}(A, B)(-1 \leq B<A \leq$ $1 ; 1 \leq j \leq p), S^{*}(-1,1, \alpha, p, j)=H_{p, j}^{0}(\alpha)$ and $K(-1,1, \alpha, p, j)=H_{p, j}^{1}(\alpha)(0 \leq \alpha<$ $p-j+1 ; 1 \leq j \leq p)$ (Srivastava et al. [10]) (see also Nunokawa [6]);
(ii) $S^{*}(A, B, \alpha, p, j)=H_{p, j}^{0}(A, B, \alpha)$ and $K(A, B, \alpha, p, j)=H_{p, j}^{1}(A, B, \alpha)(-1 \leq$ $B<A \leq 1 ; 1 \leq j \leq p)($ Aouf [2] $)$.

Let $T(p)$ denote the subclass of $S(p)$ consisting of functions of the form :

$$
\begin{equation*}
f(z)=z^{p}-\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad\left(a_{p+n} \geq 0 ; p \in N\right) . \tag{1.4}
\end{equation*}
$$

Further, we define the classes $T^{*}(A, B, \alpha, p, j)$ and $C(A, B, \alpha, p, j)$ by

$$
\begin{equation*}
T^{*}(A, B, \alpha, p, j)=S^{*}(A, B, \alpha, p, j) \cap T(p) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
C(A, B, \alpha, p, j)=K(A, B, \alpha, p, j) \cap T(p) . \tag{1.6}
\end{equation*}
$$

We note that, by specializing the parameters A, B, α, p and j, we obtain the following subclasses studied by various authors :
(i) $T^{*}(A, B, \alpha, p, 1)=T_{p}^{*}(A, B, \alpha)$ and $C(A, B, 0, p, 1)=C_{p}(A, B, \alpha)(0 \leq \alpha<$ $p ; p \in N)($ Aouf [1]);
(ii) $T^{*}(A, B, 0, p, 1)=T_{p}^{*}(A, B)$ and $C(A, B, 0, p, 1)=C_{p}(A, B)$ (Goel and Sohi [3]);
(iii) $T^{*}(-1,1, \alpha, p, 1)=T^{*}(p, \alpha)$ and $C(-1,1, \alpha, p, 1)=C(p, \alpha)(0 \leq \alpha<p ; p \in$ $N)($ Owa [7]);
(iv) $T^{*}(-\beta, \beta, \alpha, 1,1)=T^{*}(\alpha, \beta)$ and $C(-\beta, \beta, \alpha, 1,1)=C(\alpha, \beta)(0 \leq \alpha<1 ; 0<$ $\beta \leq 1$)(Gupta and Jain [5]);
(v) $T^{*}(-1,1, \alpha, 1,1)=T^{*}(\alpha)$ and $C(-1,1, \alpha, 1,1)=C(\alpha)(0 \leq \alpha<1)$ (Silverman [9]).

Also we note that :

$$
\begin{align*}
& T^{*}(-A,-B, \alpha, p, p)=F_{p}^{*}(A, B, \alpha) \\
& \quad=\left\{f(z) \in T(p):\left|\frac{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}-1}{B \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}-[B+(A-B)(1-\alpha)]}\right|<1\right. \\
& \tag{1.7}\\
& \quad(z \in U,-1 \leq B<A \leq 1,-1 \leq B<0,0 \leq \alpha<1)\} .
\end{align*}
$$

In [4] Guney and Eker studied the class $A_{0}^{*}(p, A, B, \alpha)$, where $A_{0}^{*}(p, A, B, \alpha)$ is defined as follows:

$$
\begin{gather*}
A_{0}^{*}(p, A, B, \alpha)=\{f(z) \in T(p): \\
\left|\frac{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}-1}{B \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}-[B+(A-B)(p-\alpha)]}\right|<1 \\
(z \in U,-1 \leq B<A \leq 1,-1 \leq B<0,0 \leq \alpha<p)\} . \tag{1.8}
\end{gather*}
$$

We note that this definition is not correct because $\left.\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right|_{z=0}=1$. Then we have

$$
\begin{gathered}
\frac{z f^{(p)}(z)}{f^{(p-1)}(z)} \prec \frac{1+[B+(A-B)(1-\alpha)] z}{1+B z} \\
(z \in U,-1 \leq B<A \leq 1,-1 \leq B<0 \quad \text { and } \quad 0 \leq \alpha<1)
\end{gathered}
$$

and

$$
\begin{gathered}
p-1+\frac{z f^{(p)}(z)}{f^{(p-1)}(z)} \prec p-1+\frac{1+[B+(A-B)(1-\alpha)] z}{1+B z} \\
=\frac{p+[p B+(A-B)(1-\alpha)] z}{1+B z} .
\end{gathered}
$$

Then $f(z) \in A_{0}^{*}(p, A, B, \alpha)$ if and only if (1.7) is satisfied .

2. Coefficient Estimates

Theorem 1 .Let the function $f(z)$ be defined by (1.4). Then $f(z) \in T^{*}(A, B, \alpha, p, j)$ if and only if

$$
\begin{gather*}
\sum_{n=1}^{\infty}[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1) a_{p+n} \\
\leq(B-A)(p-j+1-\alpha) \delta(p, j-1) \tag{2.1}
\end{gather*}
$$

where

$$
\delta(p, j)=\frac{p!}{(p-j)!}=\left\{\begin{array}{l}
p(p-1) \ldots . .(p-j+1)(j \neq 0) \tag{2.2}\\
1
\end{array}(j=0) .\right.
$$

Proof. . Assume that the inequality (2.1) holds true and let $|z|=1$.Then we have

$$
\begin{aligned}
& \begin{array}{l}
\left|z f^{(j)}(z)-(p-j+1) f^{(j-1)}(z)\right|-\mid B z f^{(j)}(z)-[(p-j+1) B+ \\
\quad(A-B)(p-j+1-\alpha)] f^{(j-1)}(z) \mid \\
=\left|-\sum_{n=1}^{\infty} n \delta(p+n, j-1) a_{p+n} z^{p+n-j+1}\right| \\
-\mid(B-A)(p-j+1-\alpha) \delta(p, j-1) z^{p-j+1}+ \\
\sum_{n=1}^{\infty}[n B+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1) a_{p+n} z^{p+n-j+1} \mid \\
\leq \sum_{n=1}^{\infty}[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1) a_{p+n} \\
\quad-(B-A)(p-j+1-\alpha) \delta(p, j-1) \leq 0,
\end{array}
\end{aligned}
$$

by hypothesis . Hence, by the maximum modulus theorem, we have $f(z) \in$ $T^{*}(A, B, \alpha, p, j)$.

Conversely, let $f(z) \in T^{*}(A, B, \alpha, p, j)$ be given by (1.4). Then from (1.3) and (1.4), we have

$$
\begin{aligned}
& \left|\frac{\frac{z f^{(j)}(z)}{f^{(j-1)}(z)}-(p-j+1)}{B \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}-[(p-j+1) B+(A-B)(p-j+1-\alpha)]}\right| \\
& =\left|\frac{-\sum_{n=1}^{\infty} n \delta(p+n, j-1) a_{p+n} z^{n}}{(B-A)(p-j+1-\alpha) \delta(p, j-1)-\sum_{n=1}^{\infty}[n B+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1) a_{p+n} z^{n}}\right|<1(z \in U) .
\end{aligned}
$$

Since $|\operatorname{Re}(z)| \leq|z|$ for all z, we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{n=1}^{\infty} n \delta(p+n, j-1) a_{p+n} z^{n}}{(B-A)(p-j+1-\alpha) \delta(p, j-1)-\sum_{n=1}^{\infty}[n B+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1) a_{p+n} z^{n}}\right\}<1 . \tag{2.3}
\end{equation*}
$$

Choosing values of z on the real axis so that $\frac{z f^{(j)}(z)}{f^{(j-1)}(z)}$ is real. Upon clearing the denominator in (2.3) and letting $z \rightarrow 1^{-}$through real values, we obtain

$$
\begin{gather*}
\sum_{n=1}^{\infty}[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1) a_{p+n} \\
\leq(B-A)(p-j+1-\alpha) \delta(p, j-1) \tag{2.4}
\end{gather*}
$$

which leads us at once to (2.1). This completes the proof of Theorem 1.
Corollary 2 .Let the function $f(z)$ defined by (1.4) be in the class $T^{*}(A, B, \alpha, p, j)$.
Then we have

$$
\begin{equation*}
a_{p+n} \leq \frac{(B-A)(p-j+1-\alpha) \delta(p, j-1)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)}(p, n \in N) \tag{2.5}
\end{equation*}
$$

The result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha) \delta(p, j-1)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)} z^{p+n}(p, n \in N) . \tag{2.6}
\end{equation*}
$$

Theorem 3 .Let the function $f(z)$ defined by (1.4). Then $f(z) \in C(A, B, \alpha, p, j)$ if and only if

$$
\begin{gather*}
\sum_{n=1}^{\infty}[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j) a_{p+n} \\
\leq(B-A)(p-j+1-\alpha) \delta(p, j) \tag{2.7}
\end{gather*}
$$

Proof. Since $f(z) \in C(A, B, \alpha, p, j)$ if and only if $\frac{z f^{(j)}(z)}{p-j+1} \in T^{*}(A, B, \alpha, p, j)$, we have Theorem 2 by replacing a_{p+n} by $\left(\frac{n+p-j+1}{p-j+1}\right) a_{p+n}$ in Theorem 1.

Corollary 4 .Let the function $f(z)$ defined by (1.4) be in the class $C(A, B, \alpha, p, j)$.
Then we have

$$
\begin{equation*}
a_{p+n} \leq \frac{(B-A)(p-j+1-\alpha) \delta(p, j)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j)} \quad(p, n \in N) \tag{2.8}
\end{equation*}
$$

The result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha) \delta(p, j)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j)} z^{p+n} \quad(p, n \in N) . \tag{2.9}
\end{equation*}
$$

3.Extreme Points

From Theorem 1 and Theorem 2, we see that both $T^{*}(A, B, \alpha, p, j)$ and $C(A, B, \alpha, p, j)$ are closed under convex linear combinations, which enables us to determine the extreme points for these classes.

Theorem 5 .Let

$$
\begin{equation*}
f_{p}(z)=z^{p} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{p+n}(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha) \delta(p, j-1)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)} z^{p+n}(p, n \in N) . \tag{3.2}
\end{equation*}
$$

Then $f(z) \in T^{*}(A, B, \alpha, p, j)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \lambda_{p+n} f_{p+n}(z), \tag{3.3}
\end{equation*}
$$

where $\lambda_{p+n} \geq 0$ and $\sum_{n=0}^{\infty} \lambda_{p+n}=1$.
Proof. Suppose that

$$
\begin{gather*}
f(z)=\sum_{n=0}^{\infty} \lambda_{p+n} f_{p+n}(z) \\
=z^{p}-\sum_{n=1}^{\infty} \frac{(B-A)(p-j+1-\alpha) \delta(p, j-1)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)} \lambda_{p+n} z^{p+n} . \tag{3.4}
\end{gather*}
$$

Then it follows that

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{[n(1+B)+(B-A)(p-j+1-\alpha) \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha)] \delta(p, j-1)} \\
\cdot \frac{(B-A)(p-j+1-\alpha)] \delta(p, j-1)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)} \lambda_{p+n} \\
=\sum_{n=1}^{\infty} \lambda_{p+n}=1-\lambda_{p} \leq 1 . \tag{3.5}
\end{gather*}
$$

Therefore, by Theorem $1, f(z) \in T^{*}(A, B, \alpha, p, j)$.
Conversely, assume that the function $f(z)$ defined by (1.4) belongs to the class $T^{*}(A, B, \alpha, p, j)$. Then

$$
\begin{equation*}
a_{p+n} \leq \frac{(B-A)(p-j+1-\alpha) \delta(p, j-1)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)} \quad(p, n \in N) . \tag{3.6}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\lambda_{p+n}=\frac{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)} a_{p+n} \quad(p, n \in N) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{p}=1-\sum_{n=1}^{\infty} \lambda_{p+n} \tag{3.8}
\end{equation*}
$$

we see that $f(z)$ can be expressed in the form (3.3). This completes the proof of Theorem 3.

Corollary 6 .The extreme points of the class $T^{*}(A, B, \alpha, p, j)$ are the fnctions $f_{p}(z)=$ z^{p} and
$f_{p+n}(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha) \delta(p, j-1)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)} z^{p+n}(p, n \in N)$.

Similarly, we have
Theorem 7 .Let

$$
\begin{equation*}
f_{p}(z)=z^{p} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{p+n}(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha) \delta(p, j)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j)} z^{p+n}(p, n \in N) . \tag{3.10}
\end{equation*}
$$

Then $f(z) \in C(A, B, \alpha, p, j)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \lambda_{p+n} f_{p+n}(z) \tag{3.11}
\end{equation*}
$$

where $\lambda_{p+n} \geq 0$ and $\sum_{n=0}^{\infty} \lambda_{p+n}=1$.
Corollary 8 .The extreme points of the class $C(A, B, \alpha, p, j)$ are the functions $f_{p}(z)=z^{p}$ and

$$
\begin{aligned}
& f_{p+n}(z)=z^{p}- \\
& \qquad \frac{(B-A)(p-j+1-\alpha) \delta(p, j)}{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j)} z^{p+n} \quad(p, n \in N) .
\end{aligned}
$$

4.Distortion Theorems

Theorem 9 .Let the function $f(z)$ defined by (1.4) be in the class $T^{*}(A, B, \alpha, p, j)$.
Then, for $|z|=r<1$,

$$
\begin{gather*}
r^{p}-\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} r^{p+1} \leq|f(z)| \leq \\
r^{p}+\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} r^{p+1}, \tag{4.1}
\end{gather*}
$$

and

$$
\begin{gather*}
p r^{p-1}-\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)]} r^{p} \leq\left|f^{\prime}(z)\right| \leq \\
p r^{p-1}+\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)]} r^{p} . \tag{4.2}
\end{gather*}
$$

The equality in (4.1) and (4.2) are attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} z^{p+1} \quad(z= \pm r) . \tag{4.3}
\end{equation*}
$$

Proof. Since $f(z) \in T^{*}(A, B, \alpha, p, j)$, in view of Theorem 1, we have

$$
\begin{aligned}
& {[1+B+(B-A)(p-j+1-\alpha)] \delta(p+1, j-1) \sum_{n=1}^{\infty} a_{p+n}} \\
& \leq \sum_{n=1}^{\infty}[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1) \\
& \leq(B-A)(p-j+1-\alpha) \delta(p, j-1),
\end{aligned}
$$

which evidently yields

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{p+n} \leq \frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} \tag{4.4}
\end{equation*}
$$

Consequently, for $|z|=r<1$, we obtain

$$
\begin{aligned}
|f(z)| & \leq r^{p}+r^{p+1} \sum_{n=1}^{\infty} a_{p+n} \\
& \leq r^{p}+\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} r^{p+1}
\end{aligned}
$$

and

$$
\begin{aligned}
|f(z)| & \geq r^{p}-r^{p+1} \sum_{n=1}^{\infty} a_{p+n} \\
& \geq r^{p}-\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} r^{p+1},
\end{aligned}
$$

which prove the assertion (4.1) of Theorem 5.
Also from Theorem 1, it follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty}(p+n) a_{p+n} \leq \frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)]} \tag{4.5}
\end{equation*}
$$

Consequently, for $|z|=r<1$, we have

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leq p r^{p-1}+\sum_{n=1}^{\infty}(p+n) a_{p+n} r^{p+n-1} \\
& \leq p r^{p-1}+r^{p} \sum_{n=1}^{\infty}(p+n) a_{p+n} \\
& \leq p r^{p-1}+\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)]} r^{p}
\end{aligned}
$$

and

$$
\left|f^{\prime}(z)\right| \geq p r^{p-1}-\sum_{n=1}^{\infty}(p+n) a_{p+n} r^{p+n-1}
$$

$$
\begin{aligned}
& \geq p r^{p-1}-r^{p} \sum_{n=1}^{\infty}(p+n) a_{p+n} \\
& \geq p r^{p-1}-\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)]} r^{p},
\end{aligned}
$$

which prove the assertion (4.2) of Theorem 5 .
Finally, it is easy to see that the bounds in (4.1) and (4.2) are attained for the function $f(z)$ given already by (4.3).

Corollary 10 .Let the function $f(z)$ defined by (1.4) be in the class $T^{*}(A, B, \alpha, p, j)$. Then the unit disc U is mapped onto a domain that contains the disc

$$
\begin{equation*}
|w|<\frac{(1+B)(p+1)+(B-A)(p-j+1-\alpha)(j-1)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} . \tag{4.6}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given (4.3).
Theorem 11 . Let the function $f(z)$ defined by (1.4) be in the class $C(A, B, \alpha, p, j)$.
Then, for $|z|=r<1$,

$$
\begin{gather*}
r^{p}-\frac{(B-A)(p-j+1-\alpha)(p-j+1)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} r^{p+1} \leq|f(z)| \leq \\
r^{p}+\frac{(B-A)(p-j+1-\alpha)(p-j+1)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} r^{p+1} \tag{4.7}
\end{gather*}
$$

and

$$
\begin{gather*}
p r^{p-1}-\frac{(B-A)(p-j+1-\alpha)(p-j+1)}{[1+B+(B-A)(p-j+1-\alpha)]} r^{p} \leq\left|f^{\prime}(z)\right| \leq \\
p r^{p-1}+\frac{(B-A)(p-j+1-\alpha)(p-j+1)}{[1+B+(B-A)(p-j+1-\alpha)]} r^{p} . \tag{4.8}
\end{gather*}
$$

The results are sharp.
Proof. . The proof of Theorem 6 is abtained by using the same technique as in the proof of Theorem 5 with the aid of Theorem 2. Further we can show that the bounds of Theorem 6 are sharp for the function $f(z)$ defined by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha)(p-j+1)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} z^{p+1} \quad(p \in N) . \tag{4.9}
\end{equation*}
$$

Corollary 12 .Let the function $f(z)$ defined by (1.4) be in the class $C(A, B, \alpha, p, j)$. Then the unit disc U is mapped onto a domain that contains the disc

$$
\begin{equation*}
|w|<\frac{(1+B)(p+1)+(B-A)(p-j+1-\alpha) j}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} . \tag{4.10}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (4.9).

4.Integral Operators

Theorem 13. Let the function $f(z)$ defined by (1.4) be in the class $T^{*}(A, B, \alpha, p, j)$, and let c be a real number such that $c>-p$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{5.1}
\end{equation*}
$$

also belongs to the class $T^{*}(A, B, \alpha, p, j)$.
Proof. From the representation of $F(z)$, it follows that

$$
\begin{equation*}
F(z)=z^{p}-\sum_{n=1}^{\infty} b_{p+n} z^{p+n}, \tag{5.2}
\end{equation*}
$$

where

$$
b_{p+n}=\left(\frac{c+p}{c+p+n}\right) a_{p+n} .
$$

Therefore

$$
\begin{aligned}
& \sum_{n=1}^{\infty}[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1) b_{p+n} \\
& =\sum_{n=1}^{\infty}[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)\left(\frac{c+p}{c+p+n}\right) a_{p+n} \\
& \leq \sum_{n=1}^{\infty}[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1) a_{p+n} \\
& \leq(B-A)(p-j+1-\alpha) \delta(p, j-1),
\end{aligned}
$$

scince $f(z) \in T^{*}(A, B, \alpha, p, j)$.Hence, by Theorem $1, F(z) \in T^{*}(A, B, \alpha, p, j)$.

Corollary 14 .Under the same conditions as Theorem 7, a similar proof shows that the function $F(z)$ defined by (5.1) is in the class $C(A, B, \alpha, p, j)$, wherever $f(z)$ is in the class $C(A, B, \alpha, p, j)$.

6.Radil of Close - to- Convexity, Starlikeness and Convexity

Theorem 15 .Let the function $f(z)$ defined by (1.4) be in the class $T^{*}(A, B, \alpha, p, j)$, then $f(z)$ is p-valently close - to - convex of order $\phi(0 \leq \phi<p)$ in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=\inf _{n}\left\{\frac{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)}\left(\frac{p-\phi}{p+n}\right)\right\}^{\frac{1}{n}}(n \geq 1) \tag{6.1}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given (2.6).
Proof. We must show that $\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq p-\phi$ for $|z|<r_{1}$. We have

$$
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq \sum_{n=1}^{\infty}(p+n) a_{p+n}|z|^{n} .
$$

Thus $\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq p-\phi$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{p+n}{p-\phi}\right) a_{p+n}|z|^{n} \leq 1 . \tag{6.2}
\end{equation*}
$$

Hence, by Theorem 1, (6.2) will be true if

$$
\begin{gathered}
\left(\frac{p+n}{p-\phi}\right)|z|^{n} \leq \\
\frac{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)}
\end{gathered}
$$

or if

$$
\begin{equation*}
|z| \leq\left\{\frac{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)}\left(\frac{p-\phi}{p+n}\right)\right\}^{\frac{1}{n}}(n \geq 1) . \tag{6.3}
\end{equation*}
$$

The theorem follows easily from (6.3).

Theorem 16 . Let the function $f(z)$ defined by (1.4) be in the class $T^{*}(A, B, \alpha, p, j)$, then $f(z)$ is p-valently starlike of order $\phi(0 \leq \phi<p)$ in $|z| \leq r_{2}$, where
$r_{2}=\inf _{n}\left\{\frac{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)}\left(\frac{p-\phi}{p+n-\varphi}\right)\right\}^{\frac{1}{n}}(n \geq 1)$.
The result is sharp, with the extremal function $f(z)$ given by (2.6).
Proof. It is sufficient to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-p\right| \leq p-\phi \quad \text { for } \quad|z|<r_{2}
$$

Using similar arguments as given by Theorem 9, we can get the following result.
Corollary 17 .Let the function $f(z)$ defined by (1.4) be in the class $T^{*}(A, B, \alpha, p, j)$, then $f(z)$ is p-valently convex of order $\phi(0 \leq \phi<p)$ in $|z|<r_{3}$, where
$r_{3}=\inf _{n}\left\{\frac{[n(1+B)+(B-A)(p-j+1-\alpha)] \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)}\left(\frac{p(p-\phi)}{(p+n)(p+n-\phi}\right)\right\}^{\frac{1}{n}}$
$(n \geq 1)$.
The result is sharp, with the ertremal function $f(z)$ given by (2.6).

7.Modified Hadamard Products

Let the functions $f_{\nu}(z)(\nu=1,2)$ be defined by

$$
\begin{equation*}
f_{\nu}(z)=z^{p}-\sum_{n=1}^{\infty} a_{p+n, \nu} z^{p+n} \quad\left(a_{p+n, \nu} \geq 0 ; \quad \nu=1,2\right) \tag{7.1}
\end{equation*}
$$

Then the modified Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z^{p}-\sum_{n=1}^{\infty} a_{p+n, 1} a_{p+n, 2} z^{p+n} . \tag{7.2}
\end{equation*}
$$

Throughout this section, we assume further that

$$
\begin{equation*}
X(n, A, B, \alpha, p, j)=[n(1+B)+(B-A)(p-j+1-\alpha)] . \tag{7.3}
\end{equation*}
$$

Theorem 18 . Let the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.1) be in the class $T^{*}(A, B, \alpha, p, j)$. Then $\left(f_{1} * f_{2}\right)(z) \in T^{*}(A, B, \gamma, p, j)$, where

$$
\begin{gather*}
\gamma=(p-j+1)- \\
\frac{(1+B)(B-A)(p-j+1-\alpha)^{2}(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)]^{2}(p+1)-(B-A)^{2}(p-j+1-\alpha)^{2}(p-j+2)} . \tag{7.4}
\end{gather*}
$$

The result is sharp .
Proof. Employing the technique used earlier by Schild and Silverman [7], we need to find the largest γ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{X(n, A, B, \gamma, p, j) \delta(p+n, j-1)}{(B-A)(p-j+1-\gamma) \delta(p, j-1)} a_{p+n, 1} a_{p+n, 2} \leq 1 . \tag{7.5}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{X(n, A, B, \alpha, p, j) \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)} a_{p+n, 1} \leq 1 \tag{7.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{X(n, A, B, \alpha, p, j) \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)} a_{p+n, 2} \leq 1, \tag{7.7}
\end{equation*}
$$

by the Cauchy - Schwarz inequality we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{X(n, A, B, \alpha, p, j) \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)} \sqrt{a_{p+n, 1 a_{p+n, 2}}} \leq 1 . \tag{7.8}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{equation*}
\frac{X(n, A, B, \gamma, p, j)}{(p-j+1-\gamma)} a_{p+n, 1} a_{p+n, 2} \leq \frac{X(n, A, B, \alpha, p, j)}{(p-j+1-\alpha)} \sqrt{a_{p+n, 1 a_{p+n, 2}}}(n \in N) \tag{7.9}
\end{equation*}
$$

that is, that

$$
\begin{equation*}
\sqrt{a_{p+n, 1 a_{p+n, 2}}} \leq \frac{X(n, A, B, \alpha, p, j)(p-j+1-\gamma)}{X(n, A, B, \gamma, p, j) \delta(p-j+1-\alpha)} \quad(n \in N) . \tag{7.10}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sqrt{a_{p+n, 1 a_{p+n, 2}}} \leq \frac{(B-A)(p-j+1-\alpha) \delta(p, j-1)}{X(n, A, B, \alpha, p, j) \delta(p+n, j-1)} \quad(n \in N) . \tag{7.11}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{gather*}
\frac{(B-A)(p-j+1-\alpha) \delta(p, j-1)}{X(n, A, B, \alpha, p, j) \delta(p+n, j-1)} \leq \\
\frac{X(n, A, B, \alpha, p, j)(p-j+1-\gamma)}{X(n, A, B, \gamma, p, j)(p-j+1-\alpha)} \quad(n \in N) \tag{7.12}
\end{gather*}
$$

or, equivalently, that

$$
\begin{gather*}
\gamma \leq(p-j+1)- \\
\frac{n(1+B)(B-A)(p-j+1-\alpha)^{2} \delta(p, j-1)}{[X(n, A, B, \alpha, p, j)]^{2} \delta(p+n, j-1)-(B-A)^{2}(p-j+1-\alpha)^{2} \delta(p, j-1)} \quad(n \in N) . \tag{7.13}
\end{gather*}
$$

Since

$$
\begin{gather*}
D(n)=(p-j+1)- \\
\frac{n(1+B)(B-A)(p-j+1-\alpha)^{2} \delta(p, j-1)}{[X(n, A, B, \alpha, p, j)]^{2} \delta(p+n, j-1)-(B-A)^{2}(p-j+1-\alpha)^{2} \delta(p, j-1)} \tag{7.14}
\end{gather*}
$$

is an inereasing function of $n(n \in N)$, letting $n=1$ in (7.14), we obtain

$$
\begin{gather*}
\gamma \leq D(1)=(p-j+1)- \\
\frac{(1+B)(B-A)(p-j+1-\alpha)^{2}(p-j+2)}{[X(1, A, B, \alpha, p, j)]^{2}(p+1)-(B-A)^{2}(p-j+1-\alpha)^{2}(p-j+2)}, \tag{7.15}
\end{gather*}
$$

which completes the proof of Theorem 10.
Finally, by taking the functions

$$
\begin{equation*}
f_{\nu}(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} z^{p+1} \quad(\nu=1,2 ; p \in N) \tag{7.16}
\end{equation*}
$$

we can see that the result is sharp.
Corollary 19 .For $f_{\nu}(z)(\nu=1,2)$ as in Theorem 10, we have

$$
\begin{equation*}
h(z)=z^{p}-\sum_{n=1}^{\infty} \sqrt{a_{p+n, 1} a_{p+n, 2}} z^{p+n} \tag{7.17}
\end{equation*}
$$

belongs to the class $T^{*}(A, B, \alpha, p, j)$.
The result follows from the inequality(7.8). It is sharp for the same functions as in Theorem 10.

Corollary 20 .Let the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.1) be in the class $C(A, B, \alpha, p, j)$.Then $\left(f_{1} * f_{2}\right)(z) \in C(A, B, \lambda, p, j)$, where

$$
\begin{gather*}
\lambda=(p-j+1)- \\
\frac{(1+B)(B-A)(p-j+1-\alpha)^{2}(p-j+1)}{[1+B+(B-A)(p-j+1-\alpha)]^{2}(p+1)-(B-A)^{2}(p-j+1-\alpha)^{2}(p-j+1)} . \tag{7.18}
\end{gather*}
$$

The result is sharp for the functions

$$
\begin{equation*}
f_{\nu}(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha)(p-j+1)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} z^{p+1} \quad(\nu=1,2 ; p \in N) . \tag{7.19}
\end{equation*}
$$

Using arguments similar to those in the proof of Theorem 10, we obtain the following result.

Theorem 21 .Let the function $f_{1}(z)$ defined by (7.1) be in the class $T^{*}(A, B, \alpha, p, j)$ and the function $f_{2}(z)$ defined by (7.1) be in the class $T^{*}(A, B, \tau, p, j)$. Then $\left(f_{1} *\right.$ $\left.f_{2}\right)(z) \in T^{*}(A, B, \zeta, p, j)$, where

$$
\begin{gather*}
\zeta=(p-j+1)- \\
\frac{(1+B)(B-A)(p-j+1-\alpha)(p-j+1-\tau)(p-j+2)}{X(1, A, B, \alpha, p, j) X(1, A, B, \tau, p, j)(p+1)-\Omega(p-j+2)} \tag{7.20}
\end{gather*}
$$

where

$$
\begin{equation*}
\Omega=(B-A)^{2}(p-j+1-\alpha)(p-j+1-\tau) . \tag{7.21}
\end{equation*}
$$

The result is the best possible for the functions

$$
\begin{equation*}
f_{1}(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha)(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} z^{p+1} \quad(p \in N) \tag{7.22}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z^{p}-\frac{(B-A)(p-j+1-\tau)(p-j+2)}{[1+B+(B-A)(p-j+1-\tau)](p+1)} z^{p+1} \quad(p \in N) . \tag{7.23}
\end{equation*}
$$

Corollary 22. Let the function $f_{1}(z)$ defined by (7.1) be in the class $C(A, B, \alpha, p, j)$ and let the function $f_{2}(z)$ defined by (7.1) be in the class $C(A, B, \tau, p, j)$. Then $\left(f_{1} * f_{2}\right)(z) \in C(A, B, \theta, p, j)$, where

$$
\begin{gather*}
\theta=(p-j+1)- \\
\frac{(1+B)(B-A)(p-j+1-\alpha)(p-j+1-\tau)(p-j+1)}{X(1, A, B, \alpha, p, j) X(1, A, B, \tau, p, j)(p+1)-\Omega(p-j+1)} \tag{7.24}
\end{gather*}
$$

where Ω is defined by (7.21). The result is sharp for the functions

$$
\begin{equation*}
f_{1}(z)=z^{p}-\frac{(B-A)(p-j+1-\alpha)(p-j+1)}{[1+B+(B-A)(p-j+1-\alpha)](p+1)} z^{p+1} \quad(p \in N) \tag{7.25}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z^{p}-\frac{(B-A)(p-j+1-\tau)(p-j+1)}{[1+B+(B-A)(p-j+1-\tau)](p+1)} z^{p+1} \quad(p \in N) . \tag{7.26}
\end{equation*}
$$

Theorem 23 .Let the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.1) be in the class $T^{*}(A, B, \alpha, p, j)$. Then the function

$$
\begin{equation*}
h(z)=z^{p}-\sum_{n=1}^{\infty}\left(a_{p+n, 1}^{2}+a_{p+n, 2}^{2}\right) z^{p+n} \tag{7.27}
\end{equation*}
$$

belongs to the class $T^{*}(A, B, \varphi, p, j)$, where

$$
\begin{gather*}
\varphi=(p-j+1)- \\
\frac{2(1+B)(B-A)(p-j+1-\alpha)^{2}(p-j+2)}{[1+B+(B-A)(p-j+1-\alpha)]^{2}(p+1)-2(B-A)^{2}(p-j+1-\alpha)^{2}(p-j+2)} . \tag{7.28}
\end{gather*}
$$

The result is sharp for the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.16).
Proof. By virtue of Theorem 1, we obtain

$$
\begin{gather*}
\sum_{n=1}^{\infty}\left\{\frac{[X(n, A, B, \alpha, p, j)] \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)}\right\}^{2} a_{p+n, \nu}^{2} \\
\leq\left\{\sum_{n=1}^{\infty} \frac{[X(n, A, B, \alpha, p, j)] \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)} a_{p+n, \nu}\right\}^{2} \leq 1 \quad(\nu=1,2) . \tag{7.29}
\end{gather*}
$$

It follows from (7.29) for $\nu=1$ and $\nu=2$ that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2}\left\{\frac{[X(n, A, B, \alpha, p, j)] \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)}\right\}^{2}\left(a_{p+n, 1}^{2}+a_{p+n, 2}^{2}\right) \leq 1 . \tag{7.30}
\end{equation*}
$$

Therefore, we need to find the largest φ such that

$$
\begin{gather*}
\frac{[X(n, A, B, \varphi, p, j)] \delta(p+n, j-1)}{(B-A)(p-j+1-\varphi) \delta(p, j-1)} \leq \\
\frac{1}{2}\left\{\frac{[X(n, A, B, \alpha, p, j)] \delta(p+n, j-1)}{(B-A)(p-j+1-\alpha) \delta(p, j-1)}\right\}^{2} \quad(n \in N) \tag{7.31}
\end{gather*}
$$

that is,

$$
\varphi=(p-j+1)-
$$

$$
\begin{equation*}
\frac{2 n(1+B)(B-A)(p-j+1-\alpha)^{2} \delta(p, j-1)}{[X(n, A, B, \alpha, p, j)]^{2} \delta(p+n, j-1)-2(B-A)^{2}(p-j+1-\alpha)^{2} \delta(p, j-1)}(n \in N) . \tag{7.32}
\end{equation*}
$$

Since

$$
\begin{gathered}
\Psi(n)=(p-j+1)- \\
\frac{2 n(1+B)(B-A)(p-j+1-\alpha)^{2} \delta(p, j-1)}{[X(n, A, B, \alpha, p, j)]^{2} \delta(p+n, j-1)-2(B-A)^{2}(p-j+1-\alpha)^{2} \delta(p, j-1)} .
\end{gathered}
$$

is an increasing function of $n(n \in N)$, we readily have

$$
\begin{gathered}
\varphi \leq \Psi(1)=(p-j+1)- \\
\frac{2(1+B)(B-A)(p-j+1-\alpha)^{2}(p-j-2)}{[X(1, A, B, \alpha, p, j)]^{2}(p+1)-2(B-A)^{2}(p-j+1-\alpha)^{2}(p-j-2)},
\end{gathered}
$$

and Theorem 12 follows at once.
Corollary 24 . Let the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.1)be in the class $C(A, B, \alpha, p, j)$. Then the function $h(z)$ defined by (7.27) belongs to the class $C(A, B$, $\xi, p, j)$ where

$$
\begin{gather*}
\xi=(p-j+1)- \\
\frac{2(1+B)(B-A)(p-j+1-\alpha)^{2}(p-j-1)}{[1+B+(B-A)(p-j+1-\alpha)]^{2}(p+1)-2(B-A)^{2}(p-j+1-\alpha)^{2}(p-j-1)} . \tag{7.33}
\end{gather*}
$$

The result is sharp for the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.19).

References

[1] M.K.Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc. 25 (1988), no.1, 33-66.
[2] M. K. Aouf, On certain subclasses of p-valently analytic functions of order α, Demonstratio Math. 60 (2007), no.2, 317-330 .
[3] R. M. Goel and N.S.Sohi , Multivalent functions with negative coefficients, Indain J. Pure Appl. Math. 12 (1981), no.7, 844 -853.
[4] H. O. Guney and S. S. Eker, On a certain class of p-valent functions with negative coefficients, J. Ineq. Pure Appl . Math. 6(2005), no. 4, Art. 97, 1-10.
[5] V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc. 14(1976), 409-416.
[6] M. Numokawa, On the theory of multivalent functions, Tsukuba J. Math. 11 (1987), no.2, 273-286.
[7] S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin 59 (1985), no.4, 385-402.
[8] A. Schild and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie - Sklodowska, Sect. A 29 (1975), 99-107.
[9] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
[10] H. M. Srivastava, J. Patel and G. P. Mohoparta, A certain class of p-valently analytic functions, Math. Comput. Modelling 41 (2005), 321- 334.
M. K. Aouf

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email: ${ }^{1}$ mkaouf127@yahoo.com,

