DIFFERENTIAL SANDWICH THEOREMS FOR P-VALENT FUNCTIONS RELATED TO CERTAIN OPERATOR

A. O. Mostafa

Abstract. In this paper we obtain some subordination and superordination results for p -valent functions by using a certain operator.

2000 Mathematics Subject Classification:30C45.

1. Introduction

Let $H(\mathrm{U})$ denotes the class of analytic functions in the open unit disc $\mathrm{U}=\{z \in$ $\mathbb{C}:|z|<1\}$ and let $H[a, p]$ denotes the subclass of the functions $f \in H(\mathrm{U})$ of the form:

$$
f(z)=a+a_{p} z^{p}+a_{p+1} z^{p+1}+\ldots \quad(a \in \mathbb{C} ; p \in \mathbb{N}=\{1,2, \ldots\})
$$

Also, let $A(p)$ be the subclass of the functions $f \in H(\mathrm{U})$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}), \tag{1.1}
\end{equation*}
$$

and set $A_{1} \equiv A(1)$.
For $f, g \in H(\mathrm{U})$, we say that the function f is subordinate to g, or the function g is superordinate to f, if there exists a Schwarz function w, i.e. $w \in H(\mathbb{U})$ with $w(0)=0$ and $|w(z)|<1, z \in \mathrm{U}$, such that $f(z)=g(w(z))$ for all $z \in \mathrm{U}$. This subordination is usually denoted by $f(z) \prec g(z)$.

It is well-known that, if the function g is univalent in U , then $f(z) \prec g(z)$ is equivalent to $f(0)=g(0)$ and $f(\mathrm{U}) \subset g(\mathrm{U})$.

Supposing that h and g are two analytic functions in U , let

$$
\varphi(r, s, t ; z): \mathbb{C}^{3} \times \mathrm{U} \rightarrow \mathbb{C}
$$

If h and $\varphi\left(h(z), z h^{\prime}(z), z^{2} h^{\prime \prime}(z) ; z\right)$ are univalent functions in U and if h satisfies the second-order superordination

$$
\begin{equation*}
g(z) \prec \varphi\left(h(z), z h^{\prime}(z), z^{2} h^{\prime \prime}(z) ; z\right), \tag{1.2}
\end{equation*}
$$

then g is called to be a solution of the differential superordination (1.2). A function $q \in H(\mathrm{U})$ is called a subordinant of (1.2), if $q(z) \prec h(z)$ for all the functions h satisfying (1.2). A univalent subordinant \widetilde{q} that satisfies $q(z) \prec \widetilde{q}(z)$ for all of the subordinants q of (1.2), is said to be the best subordinant.

Recently, Miller and Mocanu [14] obtained sufficient conditions on the functions g, q and φ for which the following implication holds:

$$
g(z) \prec \varphi\left(h(z), z h^{\prime}(z), z^{2} h^{\prime \prime}(z) ; z\right) \Rightarrow g(z) \prec h(z) .
$$

Using the results of Miller and Mocanu [14], Bulboača [6] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [7]. Ali et al. [1], have used the results of Bulboača [6] to obtain sufficient conditions for normalized analytic functions to satisfy:

$$
q_{1}(z) \prec \frac{z f^{\prime}(z)}{f(z)} \prec q_{2}(z),
$$

where q_{1} and q_{2} are given univalent normalized functions in U .
Very recently, Shanmugam et al. ([18], [19] and [20]) obtained the such called sandwich results for certain classes of analytic functions. Further subordination results can be found in [17] and [21].

For f given by (1.1) and $g \in A(p)$ defined by $g(z)=z^{p}+\sum_{k=p+1}^{\infty} b_{k} z^{k}$, the Hadamard product or (convolution) is defined by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) . \tag{1.3}
\end{equation*}
$$

Using the convolution and for $\lambda \geqslant 0, l \geqslant 0, p \in \mathbb{N}, m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, we define the linear operator $D_{p, l, \lambda}^{m}(f * g): A(p) \rightarrow A(p)$ by:
A. O. Mostafa - Differential Sandwich Theorems for p-Valent Functions...

$$
\begin{aligned}
D_{p, l, \lambda}^{0}(f * g)(z) & =(f * g)(z) \\
D_{p, l, \lambda}^{1}(f * g)(z) & =D_{p, l, \lambda}(f * g)(z)=(1-\lambda)(f * g)(z)+\frac{\lambda}{(p+l) z^{l-1}}\left(z^{l}(f * g)(z)\right)^{\prime} \\
& =z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{p+l+\lambda(k-p)}{p+l}\right) a_{k} b_{k} z^{k} \\
D_{p, l, \lambda}^{2}(f * g)(z) & =(1-\lambda) D_{p, l, \lambda}(f * g)(z)+\frac{\lambda}{(p+l) z^{l-1}}\left(z^{l} D_{p, l, \lambda}(f * g)(z)\right)^{\prime} \\
& =z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{p+l+\lambda(k-p)}{p+l}\right)^{2} a_{k} b_{k} z^{k}
\end{aligned}
$$

and (in general)

$$
\begin{align*}
D_{p, l, \lambda}^{m}(f * g)(z) & =(1-\lambda) D_{p, l, \lambda}^{m-1}(f * g)(z)+\frac{\lambda}{(p+l) z^{l-1}}\left(z^{l} D_{p, l, \lambda}^{m-1}(f * g)(z)\right)^{\prime} \\
& =z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{p+l+\lambda(k-p)}{p+l}\right)^{m} a_{k} b_{k} z^{k} \tag{1.4}
\end{align*}
$$

From (1.4), we can easily deduce that
$\lambda z\left(D_{p, l, \lambda}^{m}(f * g)(z)\right)^{\prime}=(p+l) D_{p, l, \lambda}^{m+1}(f * g)(z)-[p(1-\lambda)+l] D_{p, l, \lambda}^{m}(f * g)(z)(\lambda>0)$.
We remark that:
(i) For $b_{k}=1$ or $g(z)=z^{p}(1-z)^{-1}$ we have $D_{p, l, \lambda}^{m}(f * g)(z)=I_{p}^{m}(\lambda, l) f(z)$, where the operator $I_{p}^{m}(\lambda, l)$ was introduced and studied by Catas [9] which contains intern the operators D_{p}^{m} (see [5] and [11]) and D_{λ}^{m} (see [2]);
(ii) For $b_{k}=\frac{\left(\alpha_{1}\right)_{k-p} \cdots\left(\alpha_{q}\right)_{k-p}}{\left(\beta_{1}\right)_{k-p} \ldots\left(\beta_{s}\right)_{k-p}(1)_{k-p}}$, the operator $D_{p, l, \lambda}^{m}(f * g)(z)=I_{p, q, s, \lambda}^{m, l}\left(\alpha_{1}, \beta_{1}\right) f(z)$, where the operator $I_{p, q, s, \lambda}^{m, l}\left(\alpha_{1}, \beta_{1}\right)$ was introduced and studied by El-Ashwah and Aouf [10], $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$ are real or complex numbers $\left(\beta_{j} \notin Z_{0}^{-}=\right.$ $\{0,-1,-2, \ldots\} ; j=1,2, \ldots, s)\left(q \leq s+1 ; s, q \in N_{0}\right)$ and

$$
(d)_{k}= \begin{cases}1 & \left(k=0 ; d \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right) \\ d(d+1) \ldots(d+k-1) & (k \in \mathbb{N} ; d \in \mathbb{C})\end{cases}
$$

Also, for many special operators of the operator $I_{p, q, s, \lambda}^{m, l}\left(\alpha_{1}, \beta_{1}\right)$ see [10];
(iii) For $m=0$ and $b_{k}=\frac{\Gamma(p+\alpha+\beta) \Gamma(k+\beta)}{\Gamma(p+\beta) \Gamma(k+\alpha+\beta)}$, the operator $D_{p, l, \lambda}^{m}(f * g)(z)=$ $Q_{p, \beta}^{\alpha} f(z)(\alpha \geq 0, \beta>-1, p \in \mathbb{N})$, where the operator $Q_{p, \beta}^{\alpha}$ was introduced by Liu and Owa [12].
A. O. Mostafa - Differential Sandwich Theorems for p-Valent Functions...

2. Definitions and Preliminaries

To prove our results we shall need the following definition and lemmas.
Definition 1 [14]. Let \mathcal{Q} be the set of all functions f that are analytic and injective on $\overline{\mathrm{U}} \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial \mathrm{U}: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$.
Lemma 1[13]. Let q be univalent in the unit disc U, and let θ and φ be analytic in a domain D containing $q(U)$, with $\varphi(w) \neq 0$ when $w \in q(U)$. Set $Q(z)=$ $z q^{\prime}(z) \varphi(q(z)), h(z)=\theta(q(z))+Q(z)$ and suppose that
(i) Q is a starlike function in U,
(ii) $\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}>0, z \in \mathrm{U}$.

If p is analytic in U with $p(0)=q(0), p(U) \subseteq D$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \varphi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \varphi(q(z)), \tag{2.1}
\end{equation*}
$$

then $p(z) \prec q(z)$, and q is the best dominant of (2.1).
Lemma 2 [18]. Let $\mu, \gamma \in C$ with $\gamma \neq 0$, and let q be a convex function in U with

$$
\operatorname{Re}\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)>\max \left\{0 ;-\operatorname{Re} \frac{\mu}{\gamma}\right\}, z \in \mathrm{U}
$$

If p is analytic in U and

$$
\begin{equation*}
\mu p(z)+\gamma z p^{\prime}(z) \prec \mu q(z)+\gamma z q^{\prime}(z), \tag{2.2}
\end{equation*}
$$

then $p(z) \prec q(z)$, and q is the best dominant of (2.2).
Lemma 3 [8]. Let q be a univalent function in the unit disc U and let θ and φ be analytic in a domain D containing $q(U)$. Suppose that
(i) $\operatorname{Re} \frac{\theta^{\prime}(q(z))}{\varphi(q(z))}>0$ for $z \in U$,
(ii) $h(z)=z q^{\prime}(z) \varphi(q(z))$ is starlike in U.

If $p \in H[q(0), 1] \cap \mathcal{Q}$ with $p(U) \subseteq D, \theta(p(z))+z p^{\prime}(z) \varphi(p(z))$ is univalent in U, and

$$
\begin{equation*}
\theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \prec \theta(p(z))+z p^{\prime}(z) \varphi(p(z)) \tag{2.3}
\end{equation*}
$$

then $q(z) \prec p(z)$, and q is the best subordinant of (2.3).
Note that this result generalize a similar one obtained in [7].
A. O. Mostafa - Differential Sandwich Theorems for p-Valent Functions...

Lemma 4 [14]. Let q be convex in U and let $\gamma \in C$, with $\operatorname{Re}\{\gamma\}>0$. If $p \in$ $H[q(0), 1] \cap \mathcal{Q}$ and $p(z)+\gamma z p^{\prime}(z)$ is univalent in U, then

$$
\begin{equation*}
q(z)+\gamma z q^{\prime}(z) \prec p(z)+\gamma z p^{\prime}(z), \tag{2.4}
\end{equation*}
$$

implies $q(z) \prec p(z)$, and q is the best subordinant (2.4).
This last lemma give us a necessary and sufficient condition for the univalence of a special function which will be used in some particular cases:
Lemma 5 [16]. The function $q(z)=(1-z)^{-2 a b}\left(a, b \in C^{*}\right)$ is univalent in U if and only if $|2 a b-1| \leq 1$ or $|2 a b+1| \leq 1$.

3. Subordination results

Unless otherwise mentioned, we assume throughout this paper that $\lambda>0, l \geqslant$ $0, p \in \mathbb{N}, m \in \mathbb{N}_{0}$ and the powers are considered principle values.
Theorem 1. Let q be univalent in U, with $q(0)=1$, and suppose that

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)>\max \left\{0 ;-\frac{p+l}{\lambda p} \operatorname{Re} \frac{1}{\delta}\right\}, z \in \mathrm{U}, \tag{3.1}
\end{equation*}
$$

where $\delta \in C^{*}$. If $f \in A(p)$ satisfies the subordination

$$
\begin{equation*}
\frac{\delta}{p}\left(\frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}\right)+\frac{p-\delta}{p}\left(\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}\right) \prec q(z)+\frac{\delta \lambda p z q^{\prime}(z)}{p+l}, \tag{3.2}
\end{equation*}
$$

then

$$
\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}} \prec q(z),
$$

and q is the best dominant of (3.2).
Proof. Let

$$
\begin{equation*}
K(z)=\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}(z \in U), \tag{3.3}
\end{equation*}
$$

then, differentiating (3.3) logarithmically with respect to z, and using the identity (1.5), we have

$$
\frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}=K(z)+\frac{z \lambda K^{\prime}(z)}{p+l} .
$$

A simple computation shows that

$$
\frac{\delta}{p} \frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}+\frac{p-\delta}{p} \frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}=K(z)+\frac{\delta \lambda z K^{\prime}(z)}{p(p+l)},
$$

A. O. Mostafa - Differential Sandwich Theorems for p-Valent Functions...
hence the subordination (3.2) is equivalent to

$$
K(z)+\frac{\delta \lambda z K^{\prime}(z)}{p(p+l)} \prec q(z)+\frac{\delta \lambda z q^{\prime}(z)}{p(p+l)}
$$

Now, applying Lemma 2, with $\mu=1$ and $\gamma=\frac{\delta \lambda}{p(p+l)}$, the proof of Theorem 1 is completed.

Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ in Theorem 1, the condition (3.1) reduces to

$$
\begin{equation*}
\operatorname{Re} \frac{1-B z}{1+B z}>\max \left\{0 ;-\frac{p(p+l)}{\lambda} \operatorname{Re} \frac{1}{\delta}\right\}, z \in \mathrm{U} \tag{3.4}
\end{equation*}
$$

It is easy to check that the function $\varphi(\zeta)=\frac{1-\zeta}{1+\zeta},|\zeta|<|B|$, is convex in U , and since $\varphi(\bar{\zeta})=\overline{\varphi(\zeta)}$ for all $|\zeta|<|B|$, it follows that the image $\varphi(\mathrm{U})$ is a convex domain symmetric with respect to the real axis, hence

$$
\begin{equation*}
\inf \left\{\operatorname{Re} \frac{1-B z}{1+B z}: z \in \mathrm{U}\right\}=\frac{1-|B|}{1+|B|}>0 \tag{3.5}
\end{equation*}
$$

and the inequality (3.3) is equivalent to

$$
\frac{p(p+l)}{\lambda} \operatorname{Re} \frac{1}{\delta} \geq \frac{|B|-1}{|B|+1}
$$

hence we obtain the following corollary.
Corollary 1. Let $-1 \leq B<A \leq 1$ and $\delta \in C^{*}$ with

$$
\frac{1-|B|}{1+|B|} \geqslant \max \left\{0 ;-\frac{p(p+l)}{\lambda} \operatorname{Re} \frac{1}{\delta}\right\}
$$

If $f \in A(p)$, and

$$
\begin{equation*}
\frac{\delta}{p} \frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}+\frac{p-\delta}{p} \frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}} \prec \frac{1+A z}{1+B z}++\frac{\delta \lambda}{p(p+l)} \frac{(A-B) z}{(1+B z)^{2}} \tag{3.6}
\end{equation*}
$$

then

$$
\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}} \prec \frac{1+A z}{1+B z}
$$

and $\frac{1+A z}{1+B z}$ is the best dominant of (3.6).
For $p=A=1$ and $B=-1$ in Corollary 1, we have:
A. O. Mostafa - Differential Sandwich Theorems for p-Valent Functions...

Corollary 2. Let $\delta \in C^{*}$ with $\frac{p+l}{\lambda} \operatorname{Re} \frac{1}{\delta} \geq 0$. If $f \in A_{1}$, and

$$
\begin{equation*}
\delta\left(\frac{D_{l, \lambda}^{m+1}(f * g)(z)}{z}\right)+(1-\delta)\left(\frac{D_{l, \lambda}^{m}(f * g)(z)}{z}\right) \prec \frac{1+z}{1-z}+\frac{2 \delta \lambda z}{(1+l)(1-z)^{2}} \tag{3.7}
\end{equation*}
$$

then

$$
\frac{D_{l, \lambda}^{m}(f * g)(z)}{z} \prec \frac{1+z}{1-z}
$$

and $\frac{1+z}{1-z}$ is the best dominant of (3.7).
Theorem 2. Let q be univalent in U, with $q(0)=1$ and $q(z) \neq 0$ for all $z \in U$. Let $\gamma, \mu \in C^{*}$ and $\nu, \eta \in C$, with $\nu+\eta \neq 0$. Let $f \in A(p)$ and suppose that f and q satisfy the conditions:

$$
\begin{equation*}
\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}} \neq 0, z \in \mathrm{U} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}\right)>0 \tag{3.9}
\end{equation*}
$$

If

$$
\begin{equation*}
1+\gamma \mu\left[\frac{\nu z\left[D_{p, l, \lambda}^{m+1}(f * g)(z)\right]^{\prime}+\eta z\left[D_{p, l, \lambda}^{m}(f * g)(z)\right]^{\prime}}{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}-p\right] \prec 1+\gamma \frac{z q^{\prime}(z)}{q(z)} \tag{3.10}
\end{equation*}
$$

then

$$
\left[\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}}\right]^{\mu} \prec q(z)
$$

and q is the best dominant of (3.10).
Proof. Let $K(z)$ given by (3.3), then $K(z)$ is analytic in U, differentiating $K(z)$ logarithmically with respect to z, we get

$$
\frac{z K^{\prime}(z)}{K(z)}=\mu\left\{\frac{\nu z\left[D_{p, l, \lambda}^{m+1}(f * g)(z)\right]^{\prime}+\eta z\left[D_{p, l, \lambda}^{m}(f * g)(z)\right]^{\prime}}{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}-p\right\}
$$

Now, using Lemma 1 with $\theta(w)=1$ and $\varphi(w)=\frac{\gamma}{w}$, then θ is analytic in \mathbb{C} and $\varphi(w) \neq 0$ is analytic in \mathbb{C}^{*}. Also if we let

$$
Q(z)=z q^{\prime}(z) \varphi(q(z))=\gamma \frac{z q^{\prime}(z)}{q(z)}
$$

and

$$
h(z)=\theta(q(z))+Q(z)=1+\gamma \frac{z q^{\prime}(z)}{q(z)}
$$

then, $Q(0)=0$ and $Q^{\prime}(0) \neq 0$, and the assumption (3.9) yields that Q is a starlike function in U and

$$
\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}=\operatorname{Re}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}\right\}>0(z \in U)
$$

and then, by using Lemma 1 , we deduce that the assumption (3.10) implies $K(z) \prec$ $q(z)$ and the function q is the best dominant of (3.10).

Taking $\nu=0, \eta=1, \gamma=1$ and $q(z)=\frac{1+A z}{1+B z}$ in Theorem 2 , it is easy to check that the assumption (3.9) holds whenever $-1 \leq A<B \leq 1$, hence we obtain the next result:
Corollary 3. Let $-1 \leq A<B \leq 1$ and $\mu \in C^{*}$. Let $f \in A(p)$ and suppose that

$$
\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}} \neq 0, z \in \mathrm{U}
$$

If

$$
\begin{equation*}
1+\mu\left[\frac{z\left[D_{p, l, \lambda}^{m}(f * g)(z)\right]^{\prime}}{D_{p, l, \lambda}^{m}(f * g)(z)}-p\right] \prec 1+\frac{(A-B) z}{(1+A z)(1+B z)}, \tag{3.11}
\end{equation*}
$$

then

$$
\left[\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}\right]^{\mu} \prec \frac{1+A z}{1+B z},
$$

and $\frac{1+A z}{1+B z}$ is the best dominant of (3.11).
Putting $\nu=0, \eta=\lambda=p=1, m=l=0, \gamma=\frac{1}{a b}\left(a, b \in \mathbb{C}^{*}\right), \mu=a$, and $q(z)=(1-z)^{-2 a b}$ in Theorem 2 and combining this together with Lemma 5 we obtain the result due to Obradović et al. [15, Theorem 1].

Putting $\nu=0, p=\eta=\lambda=\gamma=1, m=l=0$, and $q(z)=(1+B z)^{\frac{\mu(A-B)}{B}}$ $(-1 \leq B<A \leq 1, B \neq 0)$ in Theorem 2, and using Lemma 5, we get the next corollary:
Corollary 4. Let $-1 \leq B<A \leq 1$, with $B \neq 0$, and suppose that $\left|\frac{\mu(A-B)}{B}-1\right| \leq$ 1 or $\left|\frac{\mu(A-B)}{B}+1\right| \leq 1$. Let $f \in A_{1}$ such that $\frac{f(z)}{z} \neq 0$ for all $z \in U$, and let
A. O. Mostafa - Differential Sandwich Theorems for p-Valent Functions...
$\mu \in C^{*}$. If

$$
\begin{equation*}
1+\mu\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \frac{1+[B+\mu(A-B)] z}{1+B z}, \tag{3.12}
\end{equation*}
$$

then

$$
\left(\frac{f(z)}{z}\right)^{\mu} \prec(1+B z)^{\frac{\mu(A-B)}{B}},
$$

and $(1+B z)^{\frac{\mu(A-B)}{B}}$ is the best dominant of (3.12).
Putting $\nu=0, \eta=\lambda=p=1, m=l=0, \gamma=\frac{e^{i \zeta}}{a b \cos \zeta}\left(a, b \in \mathbb{C}^{*} ;|\zeta|<\frac{\pi}{2}\right)$, $\mu=a$ and $q(z)=(1-z)^{-2 a b \cos \zeta e^{-i \zeta}}$ in Theorem 2, we obtain the result due to Aouf et al. [3].
Theorem 3. Let q be univalent in U with $q(0)=1$, let $\mu, \gamma \in C^{*}$, and let $\sigma, \Omega, \nu, \eta \in C$ with $\nu+\eta \neq 0$. Let $f \in A(p)$ and suppose that f and q satisfy the next two conditions:

$$
\begin{equation*}
\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}} \neq 0, z \in \mathrm{U} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)>\max \left\{0 ;-\operatorname{Re} \frac{\sigma}{\gamma}\right\}, z \in \mathrm{U} \tag{3.14}
\end{equation*}
$$

If

$$
\begin{gather*}
\psi(z) \equiv\left[\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}}\right]^{\mu} \\
{\left[\sigma+\gamma \mu\left(\frac{\nu z\left[D_{p, l, \lambda}^{m+1}(f * g)(z)\right]^{\prime}+\eta z\left[D_{p, l, \lambda}^{m}(f * g)(z)\right]^{\prime}}{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}-p\right)\right]+\Omega} \tag{3.15}
\end{gather*}
$$

and

$$
\begin{equation*}
\psi(z) \prec \sigma q(z)+\gamma z q^{\prime}(z)+\Omega, \tag{3.16}
\end{equation*}
$$

then

$$
\left[\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}}\right]^{\mu} \prec q(z),
$$

and q is the best dominant of (3.16).
Proof. Let

$$
\begin{equation*}
G(z)=\left[\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}}\right]^{\mu} \tag{3.17}
\end{equation*}
$$

A. O. Mostafa - Differential Sandwich Theorems for p-Valent Functions...

Then $G(z)$ is analytic in U, differentiating (3.17) logarithmically with respect to z, we have

$$
\frac{z G^{\prime}(z)}{G(z)}=\mu\left\{\frac{\nu z\left[D_{p, l, \lambda}^{m+1}(f * g)(z)\right]^{\prime}+\eta z\left[D_{p, l, \lambda}^{m}(f * g)(z)\right]^{\prime}}{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}-p\right\}
$$

hence

$$
z G^{\prime}(z)=\mu G(z)\left\{\frac{\nu z\left[D_{p, l, \lambda}^{m+1}(f * g)(z)\right]^{\prime}+\eta z\left[D_{p, l, \lambda}^{m}(f * g)(z)\right]^{\prime}}{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}-p\right\}
$$

Now, let

$$
\begin{gathered}
\theta(w)=\sigma w+\Omega, \quad \varphi(w)=\gamma, w \in \mathbb{C} \\
Q(z)=z q^{\prime}(z) \varphi(q(z))=\gamma z q^{\prime}(z)(z \in U)
\end{gathered}
$$

and

$$
h(z)=\theta(q(z))+Q(z)=\sigma q(z)+\gamma z q^{\prime}(z)+\Omega(z \in U)
$$

Using (3.14), we see that Q is starlike in U and

$$
\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}=\operatorname{Re}\left\{\frac{\sigma}{\gamma}+1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>0
$$

hence, by applying Lemma 1 , the proof of Theorem 3 is completed.
Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$, in Theorem 3 and according to (3.5), the condition (3.14) reduces to

$$
\max \left\{0 ;-\operatorname{Re} \frac{\sigma}{\gamma}\right\} \leq \frac{1-|B|}{1+|B|}
$$

Hence, for the special case $\nu=\gamma=1, \eta=0$, we obtain the following result:
Corollary 5. Let $-1 \leq B<A \leq 1$ and let $\sigma \in C$ with

$$
\max \{0 ;-\operatorname{Re} \sigma\} \leq \frac{1-|B|}{1+|B|}
$$

Let $f, g \in A(p)$ and suppose that $\frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}} \neq 0, z \in U$, and let $\mu \in C^{*}$. If

$$
\left[\frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}\right]^{\mu}\left[\sigma \zeta+\mu\left(\frac{z\left[D_{p, l, \lambda}^{m}(f * g)(z)\right]^{\prime}}{D_{p, l, \lambda}^{m}(f * g)(z)}-p\right)\right]+\Omega
$$

A. O. Mostafa - Differential Sandwich Theorems for p-Valent Functions...

$$
\begin{equation*}
\prec \sigma \frac{1+A z}{1+B z}+\Omega+z \frac{(A-B)}{(1+B z)^{2}}, \tag{3.18}
\end{equation*}
$$

then

$$
\left[\frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}\right]^{\mu} \prec \frac{1+A z}{1+B z},
$$

and $\frac{1+A z}{1+B z}$ is the best dominant of (3.18).
Taking $\eta=\gamma=\lambda=p=1, \nu=m=l=0, g(z)=z(1-z)^{-1}$ and $q(z)=\frac{1+z}{1-z}$ in Theorem 3, we obtain the next corollary:
Corollary 6. Let $f \in A_{1}$ such that $\frac{f(z)}{z} \neq 0$ for all $z \in U$, and let $\mu \in C^{*}$. If

$$
\begin{equation*}
\left[\frac{f(z)}{z}\right]^{\mu}\left[\sigma+\mu\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right]+\Omega \prec \sigma \frac{1+z}{1-z}+\Omega+\frac{2 z}{(1-z)^{2}}, \tag{3.19}
\end{equation*}
$$

then

$$
\left[\frac{f(z)}{z}\right]^{\mu} \prec \frac{1+z}{1-z},
$$

and $\frac{1+z}{1-z}$ is the best dominant of (3.19).

4. Superordination and sandwich results

Theorem 4. Let q be convex in U with $q(0)=1$ and $\delta \in C^{*}$ with $\frac{\lambda}{p(p+l)} \operatorname{Re}\{\delta\}>0$. Let $f, g \in A(p)$ and suppose that $\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}} \in H[q(0), 1] \cap \mathcal{Q}$. If the function

$$
\frac{\delta}{p}\left(\frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}\right)+\frac{p-\delta}{p}\left(\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}\right)
$$

is univalent in the unit disc U, and

$$
\begin{equation*}
q(z)+\frac{\delta \lambda z q^{\prime}(z)}{p(p+l)} \prec \frac{\delta}{p}\left(\frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}\right)+\frac{p-\delta}{p}\left(\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}\right), \tag{4.1}
\end{equation*}
$$

then

$$
q(z) \prec \frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}},
$$

A. O. Mostafa - Differential Sandwich Theorems for p-Valent Functions...
and q is the best subordinant of (4.1).
Proof. Let $K(z)$ be given by (3.3), then, from the assumption of the theorem it is analytic in U. Differentiating $K(z)$ logarithmically with respect to z, and using (1.5), we have

$$
K(z)+\frac{\delta \lambda z K^{\prime}(z)}{p(p+l)}=\frac{\delta}{p} \frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}+\frac{p-\delta}{p} \frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}
$$

Using Lemma 4, the proof of Theorem 4 is completed.
Taking $q(z)=\frac{1+A z}{1+B z}$ in Theorem 4, where $-1 \leq B<A \leq 1$, we obtain the next corollary:
Corollary 7. Let q be convex in U with $q(0)=1$, let $\delta \in C^{*}$ and with $\frac{\lambda}{p(p+l)} \operatorname{Re}\{\delta\}>$ 0. Let $f, g \in A(p)$ suppose that $\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}} \in H[q(0), 1] \cap \mathcal{Q}$. If the function

$$
\frac{\delta}{p}\left(\frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}\right)+\frac{p-\delta}{p}\left(\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}\right)
$$

is univalent in U, and

$$
\begin{gather*}
\frac{1+A z}{1+B z}+\frac{\delta \lambda(A-B) z}{p(p+l)(1+B z)^{2}} \prec \frac{\delta}{p}\left(\frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}\right)+ \\
+\frac{p-\delta}{p}\left(\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}\right) \tag{4.2}
\end{gather*}
$$

then

$$
\frac{1+A z}{1+B z} \prec \frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}
$$

and $\frac{1+A z}{1+B z}$ is the best subordinant of (4.2).
Using the same tequique of the proof of Theorem 3, and applying Lemma 3, we obtain the following result.
Theorem 5. Let q be convex in U with $q(0)=1$, let $\mu, \gamma \in C^{*}$, and let $\sigma, \Omega, \nu, \eta \in C$ with $\nu+\eta \neq 0$ and $\operatorname{Re} \frac{\sigma}{\gamma}>0$. Let $f, g \in A(p)$ and suppose that f satisfies the next conditions:

$$
\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}} \neq 0, z \in \mathrm{U}
$$

A. O. Mostafa - Differential Sandwich Theorems for p-Valent Functions...
and

$$
\left[\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}}\right]^{\mu} \in H[q(0), 1] \cap \mathcal{Q}
$$

If the function ψ given by (3.15) is univalent in U, and

$$
\begin{equation*}
\sigma q(z)+\gamma z q^{\prime}(z)+\Omega \prec \psi(z) \tag{4.3}
\end{equation*}
$$

then

$$
q(z) \prec\left[\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}}\right]^{\mu}
$$

and q is the best subordinant of (4.3).
Combining Theorem 1 with Theorem 4 and Theorem 3 with Theorem 5 , we obtain respectively the following sandwich results:
Theorem 6. Let q_{1} and q_{2} be two convex functions in U with $q_{1}(0)=q_{2}(0)=1$, let $\delta \in C^{*}$ with $\frac{\lambda}{p(p+l)} \operatorname{Re}\{\delta\}>0$. Let $f, g \in A(p)$ and suppose that $\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}} \in$ $H[q(0), 1] \cap \mathcal{Q}$. If the function

$$
\frac{\delta}{p}\left(\frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}\right)+\frac{p-\delta}{p}\left(\frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}}\right)
$$

is univalent in the unit disc U, and

$$
\begin{align*}
& q_{1}(z)+\frac{\delta \lambda z q_{1}^{\prime}(z)}{p(p+l)} \prec \frac{\delta}{p} \frac{D_{p, l, \lambda}^{m+1}(f * g)(z)}{z^{p}}+\frac{p-\delta}{p} \frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}} \\
& \prec q_{2}(z)+\frac{\delta \lambda z q^{\prime}(z)}{p(p+l)}, \tag{4.4}
\end{align*}
$$

then

$$
q_{1}(z) \prec \frac{D_{p, l, \lambda}^{m}(f * g)(z)}{z^{p}} \prec q_{2}(z)
$$

and q_{1} and q_{2} are, respectively, the best subordinant and the best dominant of (4.4). Theorem 7. Let q_{1} and q_{2} be two convex functions in U with $q_{1}(0)=q_{2}(0)=1$, let $\mu, \gamma \in C^{*}$, and let $\sigma, \Omega, \nu, \eta \in C$ with $\nu+\eta \neq 0$ and $\operatorname{Re} \frac{\sigma}{\gamma}>0$. Let $f, g \in A(p)$ and suppose that f satisfies the next conditions:

$$
\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}} \neq 0, z \in \mathrm{U}
$$

and

$$
\left[\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}}\right]^{\mu} \in H[q(0), 1] \cap \mathcal{Q}
$$

If the function ψ given by (3.15) is univalent in U, and

$$
\begin{equation*}
\sigma q_{1}(z)+\gamma z q_{1}^{\prime}(z)+\Omega \prec \psi(z) \prec \sigma q_{2}(z)+\gamma z q_{2}^{\prime}(z)+\Omega, \tag{4.5}
\end{equation*}
$$

then

$$
q_{1}(z) \prec\left[\frac{\nu D_{p, l, \lambda}^{m+1}(f * g)(z)+\eta D_{p, l, \lambda}^{m}(f * g)(z)}{(\nu+\eta) z^{p}}\right]^{\mu} \prec q_{2}(z),
$$

and q_{1} and q_{2} are, respectively, the best subordinant and the best dominant of (4.5). Remark. (i) Taking $b_{k}=1$ or $g(z)=z^{p}(1-z)^{-1}$ in the above results, we obtain results corresponding to the operator $I_{p}^{m}(\lambda, l)$;
(ii) Taking $b_{k}=\frac{\left(\alpha_{1}\right)_{k-p \ldots}\left(\alpha_{q}\right)_{k-p}}{\left(\beta_{1}\right)_{k-p} \ldots\left(\beta_{s}\right)_{k-p}(1)_{k-p}}$, in the above results, we obtain the results obtained by El-Ashwah and Aouf [10];
(iii) Taking $m=0$ and $b_{k}=\frac{\Gamma(p+\alpha+\beta) \Gamma(k+\beta)}{\Gamma(p+\beta) \Gamma(k+\alpha+\beta)}$, in the above results, we obtain the results obtained by Aouf and Bulboaca [4].

References

[1] R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004), no. 1, 87-94.
[2] F. M. AL-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.
[3] M. K. Aouf, F. M. Al.-Oboudi and M. M. Haidan, On some results for λ-spirallike and λ-Robertson functions of complex order, Publ. Institute Math. Belgrade, 77(91)(2005), 93-98.
[4] M. K. Aouf and T. Bulboaca, Subordination and superordination properties of multivalent functions defined by certain operator, J. Franklin. Instit., 347 (2010), 641-653.
[5] M. K. Aouf and A. O. Mostafa, On a subclass of n-p-valent prestarlike functions, Comput. Math. Appl., 55 (2008), no.4, 851-861.
[6] T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math. 35 (2002), no. 2, 287-292.
[7] T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. (N. S.). 13 (2002), no. 3, 301-311.
[8] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[9] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in: Proc. Book of the International Symposium on Geometric Function Theory and Applications, Istanbul, Turkey, August 2007, pp. 241250.
[10] R. M. El-Ashwah and M. K. Aouf, Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput Modelling, 51 (2010) 349-360.
[11] M. Kamali and H. Orhan, On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc., 41 (2004), no. 1, 53-71.
[12] J.-L. Liu and S. Owa, Properties of certain integral operators, Internat. J. Math. Math. Sci., 3(2004), no.1, 69-75.
[13] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[14] S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48 (2003), no. 10, 815-826.
[15] M. Obradović, M. K. Aouf and S. Owa, On some results for starlike functions of complex order, Publ. Inst. Math. Belgrade, 46(60)(1989), 79-85.
[16] W. C. Royster, On the univalence of a certain integral, Michigan Math. J., 12(1965), 385-387.
[17] C. Selvaraj and K. R. Karthikeyan, Differential subordination and superordination for certain subclasses of analytic functions, Far East J. Math. Sci., 29 (2008), no.2, 419-430.
[18] T. N. Shanmugam, S. Sivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Internat. J. Math. Math. Sci., Vol. 2006, Article ID 29684, 1-13.
[19] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems for some subclasses of analytic functions, J. Austr.Math. Anal. Appl., 3 (1) (2006), Art. 8, 1-11.
[20] T. N. Shanmugan, C. Ramachandran, M. Darus and S. Sivasubbramanian, Differantial sandwich theorems for some subclasses of analytic functions involving a linear operator, Acta Math. Univ. Comenianae, 74(2007), no.2, 287-294.
[21] H. M. Srivastava and A. Y. Lashin, Some applications of the Briot-Bouquet differential subordination, J. Ineq. Pure Appl. Math., 6(2005), no.2, Art. 41, 1-7.
A. O. Mostafa

Department of Mathematics, Faculty of Science
Mansoura University, Mansoura 35516, Egypt.
email: adelaeg254@yahoo.com

