ON WEAKLY B-IRRESOLUTE FUNCTIONS

N. RAJESH

ABSTRACT. The concept of *b*-open sets was introduced by Andrijevic. The aim of this paper is to introduce and characterize weakly *b*-irresolute functions by using *b*-open sets.

2000 Mathematics Subject Classification: 54C05.

1. INTRODUCTION

As generalization of open sets, b-open sets were introduced and studied by Andrijevic. This notions was further studied by Ekici [3, 4, 5], Park [7] and Caldas et al [2]. In this paper, we will continue the study of related functions with bopen [1] sets. We introduce and characterize the concepts of weakly b-irresolute functions and relationships between strongly b-irresolute functions and graphs are investigated. Throughout this paper, X and Y refer always topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, Cl(A) and Int(A) denote the closure of A and interior of A in X, respectively. A subset A of X is said to be b-open [1] if $A \subset Cl(Int(A)) \cup Int(Cl(A))$. The complement of b-open set is called b-closed. The intersection of all b-closed sets of X containing A is called the b-closure [1] of A and is denoted by $b \operatorname{Cl}(A)$. A set A is b-closed if and only if $b \operatorname{Cl}(A) = A$. The union of all b-open sets of X contained in A is called the b-interior of A and is denoted by $b \operatorname{Int}(A)$. A set A is said to be b-regular [7] if it is b-open and b-closed. The family of all b-open (resp. b-closed, b-regular) sets of X is denoted by BO(X) (resp. BC(X), BR(X)). We have set $BO(X, x) = \{V \in BO(X) | x \in V\}$ for $x \in X$.

2. Preliminaries

A point x of X is called a b- θ -cluster [7] points of $S \subset X$ if $b \operatorname{Cl}(U) \cap S \neq \emptyset$ for every $U \in BO(X, x)$. The set of all b- θ -cluster points of S is called the b- θ -closure of S and is denoted by $b \operatorname{Cl}_{\theta}(S)$. A subset S is said to be b- θ -closed if and only if S= $b \operatorname{Cl}_{\theta}(S)$. The complement of a b- θ -closed set is said to be b- θ -open.

Theorem 1 [7] Let A be a subset of a topological space X. Then,

- (i) $A \in BO(X)$ if and only if $b \operatorname{Cl}(A) \in BR(X)$.
- (ii) $A \in BO(X)$ if and only if $b \operatorname{Int}(A) \in BR(X)$.

Theorem 2 [7] For a subset A of a topological space X, the following properties hold:

- (i) If $A \in BO(X)$, then $b \operatorname{Cl}(A) = b \operatorname{Cl}_{\theta}(A)$,
- (ii) $A \in BR(X)$ if and only if A is b- θ -open and b- θ -closed.

Definition 1 [7] A topological space X is said to be b-regular if for each $F \in BC(X)$ and each $x \notin F$, there exist disjoint b-open sets U and V such that $x \in U$ and $F \subset V$.

Theorem 3 [7] For a topological space X, the following properties are equivalent:

- (i) X is b-regular;
- (ii) For each $U \in BO(X)$ and each $x \in U$, there exists $V \in BO(X)$ such that $x \in V \subset b \operatorname{Cl}(V) \subset U$;
- (iii) For each $U \in BO(X)$ and each $x \in U$, there exists $V \in BR(X)$ such that $x \in V \subset U$.

Definition 2 A function $f : X \to Y$ is said to be b-irresolute [6] if $f^{-1}(V) \in BO(X)$ for every $V \in BO(Y)$.

3. Weakly *b*-irresolute functions

We have introduce the following definition

Definition 3 A function $f : X \to Y$ is said to be weakly b-irresolute if for each $x \in X$ and each $V \in BO(Y, f(x))$, there exists $U \in BO(X, x)$ such that $f(U) \subset b \operatorname{Cl}(V)$.

Clearly, every *b*-irresolute function is weakly *b*-irresolute but the converse is not true, in general, as shown by the following example.

Example 1 Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, Y\}$. Define a function $f : X \to Y$ such that f(a) = a, f(b) = c and f(c) = b. Then, clearly f is weakly b-irresolute but not b-irresolute.

Theorem 4 For a function $f: X \to Y$, the following properties are equivalent:

- (i) f is weakly b-irresolute;
- (ii) $f^{-1}(V) \subset b \operatorname{Int}(f^{-1}(b \operatorname{Cl}(V)))$ for every $V \in BO(Y)$;
- (iii) $b\operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(b\operatorname{Cl}(V))$ for every $V \in BO(Y)$.

Proof. (i) \Rightarrow (ii): Suppose that $V \in BO(Y)$ and let $x \in f^{-1}(V)$. By (i), $f(U) \subset b \operatorname{Cl}(V)$ for some $U \in BO(X, x)$. Therefore, we have $U \subset f^{-1}(b \operatorname{Cl}(V))$ and $x \in U \subset b \operatorname{Int}(f^{-1}(b \operatorname{Cl}(V)))$. This shows that $f^{-}(V) \subset b \operatorname{Int}(f^{-1}(b \operatorname{Cl}(V)))$.

(ii) \Rightarrow (iii): Suppose that $V \in BO(Y)$ and $x \notin f^{-1}(b\operatorname{Cl}(V))$. Then $f(x) \notin b\operatorname{Cl}(V)$. There exists $F \in BO(Y, f(x))$ such that $F \cap V = \emptyset$. Since $V \in BO(Y)$, we have $b\operatorname{Cl}(F) \cap V = \emptyset$ and hence $b\operatorname{Int}(f^{-1}(b\operatorname{Cl}(F))) \cap f^{-1}(V) = \emptyset$. By (ii), we have $x \in f^{-1}(F) \subset b\operatorname{Int}(f^{-1}(b\operatorname{Cl}(F))) \in BO(X)$. Therefore, we obtain $x \notin b\operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(b\operatorname{Cl}(V))$.

(iii) \Rightarrow (i): Let $x \in X$ and $V \in BO(Y, f(x))$. By Theorem 1, $b \operatorname{Cl}(V) \in BR(Y)$ and $x \notin f^{-1}(b \operatorname{Cl}(Y - b \operatorname{Cl}(V)))$. Since $Y - b \operatorname{Cl}(V) \in BO(Y)$, by (iii), we have $x \notin b \operatorname{Cl}(f^{-1}(Y - b \operatorname{Cl}(V)))$. Hence there exists $F \in BO(X, x)$ such that $F \cap$ $f^{-1}(Y - b \operatorname{Cl}(V)) = \emptyset$. Therefore, we obtain $f(F) \cap (Y - b \operatorname{Cl}(V)) = \emptyset$ and hence $f(F) \subset b \operatorname{Cl}(V)$. This shows that f is weakly b-irresolute.

Theorem 5 For a function $f: X \to Y$, the following properties are equivalent:

- (i) f is weakly b-irresolute;
- (ii) $b \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(bcl_{\theta}(B))$ for every subset B of Y;
- (iii) $f(b\operatorname{Cl}(A)) \subset b\operatorname{Cl}_{\theta}(f(A))$ for every subset A of X;
- (iv) $f^{-1}(F) \in BC(X)$ for every b- θ -closed set F of Y;
- (v) $f^{-1}(V) \in BO(X)$ for every b- θ -open set V of Y.

Proof. (i) \Rightarrow (ii): Let *B* be any subset of *Y* and $x \notin f^{-1}(b\operatorname{Cl}_{\theta}(B))$. Then $f(x) \notin b\operatorname{Cl}_{\theta}(B)$ and there exists $V \in BO(Y, f(x))$ such that $b\operatorname{Cl}(V) \cap B = \emptyset$. By (i), there exists $U \in BO(X, x)$ such that $f(U) \subset b\operatorname{Cl}(V)$. Hence $f(U) \cap B = \emptyset$ and $U \cap f^{-1}(B) = \emptyset$. Consequently, we obtain $x \notin b\operatorname{Cl}(f^{-1}(B))$. (ii) \Rightarrow (iii): Let *A* be any subset of *X*. By (ii), we have $b\operatorname{Cl}(A) \subset b\operatorname{Cl}(f^{-1}(f(A)))$ $\subset f^{-1}(b \operatorname{Cl}_{\theta}(f(A)))$ and hence $f(b \operatorname{Cl}(A)) \subset b \operatorname{Cl}_{\theta}(f(A))$. (iii) \Rightarrow (iv): Let F be any b- θ -closed set of Y. Then, by (iii), we have $f(b \operatorname{Cl}(f^{-1}(F))) \subset b \operatorname{Cl}_{\theta}(f(f^{-1}(F))) \subset b \operatorname{Cl}_{\theta}(F) = F$. Therefore, we have $b \operatorname{Cl}(f^{-1}(F)) \subset f^{-1}(F)$ and hence $b \operatorname{Cl}(f^{-1}(F)) = f^{-1}(F)$. This shows that $f^{-1}(F) \in BC(X)$. (iv) \Rightarrow (v): This is obvious.

(v) \Rightarrow (i): Let $x \in X$ and $V \in BO(Y, f(x))$. By Theorems 1 and 2, $b \operatorname{Cl}(V)$ is $b - \theta$ open in Y. Put $U = f^{-1}(b \operatorname{Cl}(V))$. Then by (v), $U \in BO(X, x)$ and $f(U) \subset b \operatorname{Cl}(V)$.
Thus, f is weakly b-irresolute.

Theorem 6 For a function $f: X \to Y$, the following properties are equivalent:

- (i) f is weakly b-irresolute;
- (ii) for each $x \in X$ and each $V \in BO(Y, f(x))$ there exists $U \in BO(X, x)$ such that $f(b \operatorname{Cl}(U)) \subset b \operatorname{Cl}(V)$;
- (iii) $f^{-1}(F) \in BR(X)$ for every $F \in BR(Y)$.

Proof. (i) \Rightarrow (ii): Let $x \in X$ and $V \in BO(Y, f(x))$. Then $b \operatorname{Cl}(V)$ is b- θ -open and b- θ -closed in Y, by Theorems 1 and 2. Now, put $U = f^{-1}(b \operatorname{Cl}(V))$. Then by Theorem 5, $U \in BR(X)$ and hence $U \in BO(X, x)$. Therefore, $U = b \operatorname{Cl}(U)$ and $f(b \operatorname{Cl}(U)) \subset b \operatorname{Cl}(V)$.

(ii) \Rightarrow (iii): Let $F \in BR(Y)$ and $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii), there exists $V \in BO(X, x)$ such that $f(b \operatorname{Cl}(U)) \subset F$. Therefore, we have $x \in U \subset b \operatorname{Cl}(U) \subset f^{-1}(F)$ and hence $f^{-1}(F) \in BO(X)$. Since $Y - F \in BR(Y)$, $f^{-1}(Y - F) = X - f^{-1}(F) \in BO(X)$. Therefore, we obtain $f^{-1}(F) \in BC(X)$ and hence $f^{-1}(F) \in BR(X)$.

(iii) \Rightarrow (i): Let $x \in X$ and $V \in BO(Y, f(x))$. By Theorem 1, $b \operatorname{Cl}(V) \in BR(Y, f(x))$ and $f^{-1}(b \operatorname{Cl}(V)) \in BR(X, x)$. Set $U = f^{-1}(b \operatorname{Cl}(V))$. Then $U \in BO(X, x)$ and $f(U) \subset b \operatorname{Cl}(V)$. This shows that f is weakly *b*-irresolute.

The proof of the following two theorems are similar to Theorem 5 and 6.

Theorem 7 For a function $f: X \to Y$, the following properties are equivalent:

- (i) f is weakly b-irreslute;
- (*ii*) $f^{-1}(V) \subset b \operatorname{Int}_{\theta}(f^{-1}(b \operatorname{Cl}_{\theta}(V)))$ for every $V \in BO(Y)$;
- (iii) $b\operatorname{Cl}_{\theta}(f^{-1}(V)) \subset f^{-1}(b\operatorname{Cl}_{\theta}(V))$ for every $V \in BO(Y)$.

Theorem 8 For a function $f: X \to Y$, the following properties are equivalent:

- (i) f is weakly b-irreslute;
- (*ii*) $b\operatorname{Cl}_{\theta}(f^{-1}(B)) \subset f^{-1}(b\operatorname{Cl}_{\theta}(B))$ for every subset B of Y;
- (*iii*) $f(b \operatorname{Cl}_{\theta}(A)) \subset b \operatorname{Cl}_{\theta}(f(A))$ for every subset A of X;
- (iv) $f^{-1}(F)$ is b- θ -closed in X for every b- θ -closed set F of Y.
- (v) $f^{-1}(V)$ is b- θ -open in X for every b- θ -closed set V of Y.

Theorem 9 Let Y be b-regular space. Then a function $f : X \to Y$ is weakly birresolute if and only if it is b-irresolute.

Proof. Suppose that $f: X \to Y$ is weakly b-irresolute. Let V be any b-open set of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. Since Y is b-regular, by Theorem 3 there exists $F \in BO(Y)$ such that $f(x) \in F \subset b \operatorname{Cl}(W) \subset V$. Since f is weakly b-irresolute, there exists $U \in BO(X, x)$ such that $f(U) \subset b \operatorname{Cl}(F)$. Therefore, we have $x \in U \subset f^{-1}(V)$ and $f^{-1}(V) \in BO(X)$. This shows that f is b-irresolute.

Theorem 10 A function $f : X \to Y$ is weakly b-irresolute if the graph function, defined by g(x) = (x, f(x)) for each $x \in X$, is weakly b-irresolute.

Proof. Let $x \in X$ and $V \in BO(Y, f(x))$. Then $X \times V$ is a *b*-open subset of $X \times Y$ containing g(x). Since g is weakly *b*-irresolute, there exists $U \in BO(X, x)$ such that $g(U) \subset b \operatorname{Cl}(X \times V) \subset X \times b \operatorname{Cl}(V)$. Therefore, we obtain $f(U) \subset b \operatorname{Cl}(V)$.

Recall that a topological space X is said to be $b-T_2$ [7] if for each pair of distinct points $x, y \in X$, there exists $U \in BO(X, x)$ and $V \in BO(X, y)$ such that $U \cap V = \emptyset$.

Lemma 11 [7] A topological space X is b-T₂ if and only if for each pair of distinct points $x, y \in X$, there exists $U \in BO(X, x)$ and $V \in BO(X, y)$ such that $b \operatorname{Cl}(U) \cap b \operatorname{Cl}(V) = \emptyset$.

Theorem 12 If Y is b-T₂ space and $f : X \to Y$ is a weakly b-irresolute injection, then X is b-T₂.

Proof. Let x, y be any distinct points of X. Since f is injective, we have $f(x) \neq f(y)$. Since Y is $b \cdot T_2$, by Lemma 11 there exists $V \in BO(Y, f(x))$ and $W \in BO(Y, f(y))$ such that $b \operatorname{Cl}(V) \cap b \operatorname{Cl}(W) = \emptyset$. Since f is weakly b-irresolute, there exists $G \in BO(X, x)$ and $H \in BO(X, y)$ such that $f(G) \subset b \operatorname{Cl}(V)$ and $f(H) \subset b \operatorname{Cl}(W)$. Therefore, we obtain $G \cap H = \emptyset$ and hence X is $b \cdot T_2$.

Definition 4 A function $f: X \to Y$ is said to have a strongly b-closed graph if for each $(x, y) \in (X \times Y) - G(f)$, there exists $U \in BO(X, x)$ and $V \in BO(Y, y)$ such that $(b \operatorname{Cl}(U) \times b \operatorname{Cl}(V)) \cap G(f) = \emptyset$.

Theorem 13 If Y is a b- T_2 space and $f : X \to Y$ is weakly b-irresolute, then G(f) is strongly b-closed.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$ and by Lemma 11, there exist $V \in BO(Y, f(x))$ and $W \in BO(Y, y)$ such that $b \operatorname{Cl}(V) \cap b \operatorname{Cl}(W) = \emptyset$. Since f is weakly b-irresolute, by Theorem 6 there exists $U \in BO(X, x)$ such that $f(b \operatorname{Cl}(U)) \subset b \operatorname{Cl}(V)$. Therefore, we obtain $f(b \operatorname{Cl}(U)) \cap b \operatorname{Cl}(W) = \emptyset$ and hence $(b \operatorname{Cl}(U) \times b \operatorname{Cl}(W)) \cap G(f) = \emptyset$. This shows that G(f) is strongly b-closed in $X \times Y$.

Theorem 14 If a function $f : X \to Y$ is weakly b-irresolute, injective and G(f) is strongly b-closed, then X is $b-T_2$.

Proof. Let x, y be a pair of distinct points of X. Since f is injective, $f(x) \neq f(y)$ and $(x, f(y)) \notin G(f)$. Since G(f) is strongly b-closed, there exist $U \in BO(X, x)$ and $V \in BO(Y, f(y))$ such that $f(b \operatorname{Cl}(U)) \cap b \operatorname{Cl}(V) = \emptyset$. Since f is weakly birresolute, there exists $H \in BO(X, y)$ such that $f(H) \subset b \operatorname{Cl}(V)$. Therefore, we obtain $f(b \operatorname{Cl}(G)) \cap f(H) = \emptyset$ and hence $G \cap H = \emptyset$. This shows that X is $b-T_2$.

Recall that a topological space X is said to be *b*-connected [7] if it cannot be written as the union of two non-empty disjoint *b*-open sets.

Theorem 15 If a function $f : X \to Y$ is a weakly b-irresolute surjection and X is b-connected, then Y is b-connected.

Proof. Suppose that Y is not b-connected. Then there exists nonempty b-open sets U and V of Y such that $U \cup V = Y$ and $U \cap V = \emptyset$. Then we have $U, V \in BR(Y)$. By Theorem 6, $f^{-1}(U)$, $f^{-1}(V) \in BR(X)$ since f is weakly b-irresolute. Moreover, we have $f^{-1}(U) \cup f^{-1}(V) = X$, $f^{-1}(U) \cap f^{-1}(V) = \emptyset$, and $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty. Therefore, X is not b-connected.

The following example shows that the image of a *b*-connected set under a weakly *b*-irresolute function is not necessarily *b*-connected.

Example 2 Let $X = \{a, b, c\}, \tau$ be the indiscrete topology and $\sigma = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$. The function $f : (X, \tau) \to (Y, \sigma)$ defined by f(a) = a and f(b) = f(c) = b is weakly b-irresolute. Moreover, X is b-connected but f(X) is not b-connected.

Definition 5 A function $f : X \to Y$ is said to be almost b-irresolute if for each point $x \in X$ and each b-open set containing f(x), $b \operatorname{Cl}(f^{-1}(V)) \in BO(X, x)$.

An almost *b*-irresolute function need not be weakly *b*-irresolute, as show by the following example.

Example 3 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then the function $f : X \to Y$ defined by f(a) = f(c) = b and f(b) = c is weakly b-irresolute but not b-irresolute.

Theorem 16 If $f: X \to Y$ is almost b-irresolute add $b \operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(b \operatorname{Cl}(V))$ for each $V \in BO(Y)$, then f is weakly b-irresolute.

Proof. For any point $x \in X$ and $V \in BO(X, f(x))$, we have $b \operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(b \operatorname{Cl}(V))$ by hypothesis. Since f is almost b-irresolute, there exists $U \in BO(X, x)$ such that $x \in U \subset b \operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(b \operatorname{Cl}(V))$. Thus, $f(U) \subset b \operatorname{Cl}(V)$. The con-

verse to Theorem 16 does not hold, in general, as shown by the following example.

Example 4 Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, Y\}$. Define a function $f : X \to Y$ such that f(a) = a, f(b) = c and f(c) = b. Then, clearly f is weakly b-irresolute but not b-irresolute.

Theorem 17 An almost b-irresolute function $f : X \to Y$ is weakly b-irresolute if and only if $b \operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(b \operatorname{Cl}(V))$.

Proof. The proof follows from Theorems 4 and 16.

Definition 6 Let A be a subset of a space X. The weakly b-irresolute function from X onto a subspace A of X is called a weakly b-irresolute retraction if the restriction $f_{|A|}$ is the identity function on A. We call such an A a weakly b-irresolute retract of X.

Lemma 18 [1] If A is b-open and U is open in a space X, then $A \cap U$ is b-open in X.

Theorem 19 Let A be a subset of a space X and $f : X \to A$ be a weakly b-irresolute retraction of X onto A. If X is T_2 , then A is b-closed in X.

Proof. Suppose A is not b-closed. Then there exists a b-limit point x of A in X such that $x \in b \operatorname{Cl}(A)$ but $x \notin A$. Since f is weakly b-irresolute retraction, $f(x) \neq x$. Since X is T_2 , there exist disjoint open sets, say, U and V containing x and f(x), respectively. Thus, $U \cap \operatorname{Cl}(V) = \emptyset$. Also, $V \cap A$ is open in A; hence $V \cap A \in BO(A, f(x))$. Let $W \in BO(X, x)$. Then $U \cap W \in BO(X, x)$, by Lemma 18, and hence $(U \cap W) \cap A \neq \emptyset$ because $x \in bd(A)$. Therefore, there exists a point $y \in (U \cap W \cap A)$. Since $y \in A$, $f(y) = y \in U$ and hence $f(y) \notin \operatorname{Cl}(V)$. This shows that $f(W) \subset \operatorname{Cl}(V)$. Now, $\operatorname{Cl}(V \cap A) = \operatorname{Cl}(V \cap A) \cap A \subset \operatorname{Cl}(V)$. Therefore, f(W) is not a subset of $\operatorname{Cl}(V \cap A)$, which implied that f(W) is not a subset of $b \operatorname{Cl}(V \cap A)$. This contradicts the hypothesis that f is weakly b-irresolute. Thus, A is b-closed in X. In Theorem 19, X is necessary T_2 , as shown by the following example.

Example 5 Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, Y\}$. Define a function $f : X \to Y$ such that f(a) = a, f(b) = c and f(c) = b. Then, clearly f is weakly b-irresolute but not b-irresolute.

References

- [1] D. Andrijevic, On b-open sets, Math. Vesnik, 48(1996), 59–64.
- [2] M. Caldas, S. Jafari and T. Noiri, $On \wedge_b$ -sets and the associated topology τ^{\wedge_b} , Acta. Math. Hungar., 110(4), (2006), 337-345.
- [3] E. Ekici, On γ -US-spaces, Indian J. Math., 47, 2-3(2005), 131-138.
- [4] E. Ekici, On R-spaces, Int. J. Pure. Appl. Math., 25(2)(2005), 163–172.
- [5] E. Ekici and M. Caldas, Slightly γ-continuous functions, Bol. Soc. Paran. Mat. (3s) V.22, 2 (2004), 63-74.
- [6] A. A. El-Abik, A study of some types of mappings on topological spaces, Master's Thesis, Faculty of Science, Tanta University, Tanta, Egypt (1997).
- [7] J. H. Park, Strongly θ-b-continuous functions, Acta Math. Hungar., 110(4)2006, 347-359.

Neelamegarajan Rajesh Department of Mathematics Rajah serfoji Govt. College Thanjavur 613005, Tamilnadu, India. email: nrajesh_topology@yahoo.co.in