ON MEDIAN-PATH AND CENTRAL-PATH PROBLEMS

Nader Jafari Rad

Abstract

The Median-Path problem consists of locating a path on a network, minimizing a function of two parameters: accessibility to the path and total cost of the path. Applications of this problem can be found in transportation planning, water resource management and fluid transportation. The Central-Path problem is defined similarly. In this paper, we give a construction on a graph G which produces an infinite chain $G=G_{0} \leq G_{1} \leq G_{2} \leq \ldots$ of graphs containing G such that for a given median (center) path P in G, P is a median (center) path in G_{i} for any $i \geq 1$.

2000 Mathematics Subject Classification: 90B80, 05CXX.

1. Introduction

Network location problems occur when one or more facilities have to be located on a network. They can be classified according to the form of the facilities, so a distinction is made between point location problems, where the facilities are to be located either in nodes or in points of the network, and path-location problems, where the facilities are path-shaped. For a complete survey on path-location problems we refer the reader to Beeker et al. (2007), Labbe et al. (1998), and Lari et al. (2008).

The Median-Path problem consists of locating a path, which minimizes a function of two parameters: the accessibility to the path and the cost of the path. Accessibility is expressed, by Buckley and Harary (1990), as the sum of the distances from the path to all the nodes not belonging to it. The cost of the path is given by the sum of the costs of the arcs belonging to the path. The Median-Path problem can therefore be defined as a bi-criterion problem, with two conflicting objective functions (the cost of the path must be increased to reduce the distance of the path and vice-versa). The complexity of the Median-Path problem on general networks is analyzed in Richey (1990) and in Hakimi et al. (1993). The problem is NP-hard on general graphs and polynomial on trees and series-parallel graphs. For
some references see Minieka (1985), Minieka and Patel (1983), Morgan and Slater (1980), and Slater (1982).

Applications of the Median-Path problem arise in the design of lines (bus, underground) in a mass transportation system, where we assume that the path represents the facility and that the users demanding to reach the path are located in the nodes. The cost of the path will express the cost of setting up the facility, while the distance of the path will measure the total distance the users have to cover to reach the path.

We model the network as a graph $G=(V, E)$, where V is the vertex set with $|V|=n$ and E is the edge set with $|E|=m$. We assume that the demand points coincide with the vertices, and restrict the location of the facilities to the vertices. Each vertex v_{i} has a weight w_{i} and the edges of graph have positive lengths. We recall that the open neighborhood of a vertex v in a graph G is denoted by $N(v)$ or $N_{G}(v)$ to refer G. Thus $N(v)=\{u \in V \mid u v \in E\}$. Also for two graphs G and H by $G \leq H$ we mean that G is a subgraph of H.

We call a graph G triangle-free if G does not contain an triangle as an induced subgraph. We call a graph G also claw-free if it does not contain an star $K_{1,3}$ as an induced subgraph. Triangle-free graphs and claw-free graphs are class of wellstudied graphs and play an important role in graph theory. Many of graph theory parameters deal with triangle-free graphs and claw-free graphs. To see some results on triangle-free graphs and claw-free graphs we refer the reader to for example [11]. Yet determining location problems in triangle-free graphs is open.

In this note we give a construction on a graph G which produces an infinite chain $G=G_{0} \leq G_{1} \leq G_{2} \leq \ldots$ of graphs containing G such that for a given median (center) path P in G, P is a median (center) path in G_{i} for any $i \geq 1$. Furthermore if G is triangle-free (claw-free), then $M(G)$ is triangle-free (claw-free).

All graphs we handle in this paper are connected, and all vertices have the same weight, and also all edges have the same weight.

2. Notation and definition

Given a directed graph $G=(V, E)$, consider a weighting function $w: V \longrightarrow$ $\Re^{+} \cup\{0\}$ that associates to each vertex $v \in V$ the demand $w(v)$ observed at v, a weighting function $c: A \longrightarrow \Re^{+}$that associates a length $c(a)$ to each arc $a \in E$. Given two vertices u and v, the distance $d(u, v)$ from u to v is the length of the shortest path from u to v. Let P be a path in G. The weighted distance from a vertex u to P is defined as the distance from u to that vertex in P that is the closest to u, multiplied by $w(u)$. Thus, the sum of the weighted distances from all the vertices in G to P is:

$$
\begin{equation*}
f(P)=\sum_{u \notin P} w(u) \min _{v \in P} d(u, v) . \tag{1}
\end{equation*}
$$

$f(P)$ is called the DISTSUM of P. If $P=\{v\}$ then we write $f(v)$ instead of $f(P)$. A path P which minimizes DISTSUM in G is called the median path.

Also we define the ECCENTRICITY of a path P by

$$
\begin{equation*}
E(P)=\max _{v \in V}\{d(v, P)\} . \tag{2}
\end{equation*}
$$

The shortest path P among those paths that minimizes ECCENTRICITY is the central path of G.

3. Main Results

Let $G=(V, E)$ be a weighted graph (directed or undirected) with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For $i=1,2, \ldots, n$, let w_{i} be the weight of v_{i}. Also for $e=v_{i} v_{j} \in$ E, let $w_{i, j}$ be the weight of e. We give a construction namely M-construction on G. The M-construction produce a M-graph $M(G)$ from G with $V(M(G))=V \cup U$ where $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $E(M(G))=E(G) \cup\left\{u_{i} v: v \in N_{G}\left(v_{i}\right), i=1, \ldots, n\right\}$. The weight of new vertices and new edges (and also the direction of new edges) of $M(G)$ are as the following.

- For $i=1,2, \ldots, n$, the weight of u_{i} is w_{i}.
- For a new edge $e=u_{i} v_{j}$ the weight of e is $w_{i, j}$.
- If G is a directed graph, then for a new edge $e=u_{i} v_{j}$ the direction of e is the same direction of the edge $v_{i} v_{j}$, i.e. if the direction of the edge $v_{i} v_{j}$ is $v_{i} \longrightarrow v_{j}$ then the direction of $u_{i} v_{j}$ is $u_{i} \longrightarrow v_{j}$, and if the direction of $v_{i} v_{j}$ is $v_{j} \longrightarrow v_{i}$ then the direction of $u_{i} v_{j}$ is $v_{j} \longrightarrow u_{i}$.

We define the k-th M-graph of G, recursively by $M^{0}(G)=G$ and $M^{k+1}(G)=$ $M\left(M^{k}(G)\right)$ for $k \geq 0$.

Let P be a median (central) path in a graph G. We show that for any positive integer $k \geq 1, P$ is a median (central) path in $M^{k}(G)$.

Theorem 1.Let P be a median path in a graph G. For any positive integer $k \geq 1, P$ is a median path in $M^{k}(G)$.

Proof. Let G be a graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For $i=1,2, \ldots, n$, let w_{i} be the weight of v_{i}, and for $e=v_{i} v_{j} \in E$, let $w_{i, j}$ be the weight of e. So $V(M(G))=V \cup U$, where $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $E(M(G))=E(G) \cup\left\{u_{i} v: v \in\right.$
$\left.N_{G}\left(v_{i}\right), i=1, \ldots, n\right\}$. Also, for $i=1,2, \ldots, n$, the weight of u_{i} is w_{i}, for a new edge $e=u_{i} v_{j}$ the weight of e is $w_{i, j}$, and if G is a directed graph, then for a new edge $e=u_{i} v_{j}$ the direction e is the same direction of the edge $v_{i} v_{j}$.

Let P be a median path in G. Thus

$$
\begin{equation*}
f(P)=\sum_{u \notin P} w(u) \min _{v \in P} d(u, v) . \tag{3}
\end{equation*}
$$

is minimized. In order to refering P to the graph G, we use $f_{G}(P)$ instead of $f(P)$. So

$$
\begin{equation*}
f_{G}(P)=\sum_{u \in V(G) \backslash V(P)} w(u) \min _{v \in P} d(u, v) . \tag{4}
\end{equation*}
$$

Now in the graph $M(G)$ we have

$$
\begin{aligned}
f_{M(G)}(P) & =\sum_{u \in V(M(G)) \backslash V(P)} w(u) \min _{v \in P} d(u, v) \\
& =2 f_{M(G)}(P)+\sum_{v_{i} \in V(P)} w\left(u_{i}\right) \min _{v \in P} d\left(u_{i}, v\right)
\end{aligned}
$$

Let Q be a median path in $M(G)$. We show that $f_{M(G)}(Q)=f_{M(G)}(P)$. We consider two cases.

Case 1. $V(Q) \cap U=\emptyset$.
Then Q is a path in G, and $f_{G}(Q) \geq f_{G}(P)$ since P is a median path in G.
Subcase 1.1. $|V(Q)| \geq|V(P)|$. Then

$$
\sum_{v_{i} \in V(Q)} w\left(u_{i}\right) \min _{v \in Q} d\left(u_{i}, v\right) \geq \sum_{v_{i} \in V(P)} w\left(u_{i}\right) \min _{v \in P} d\left(u_{i}, v\right)
$$

This inequality together with $f_{G}(Q) \geq f_{G}(P)$ implies that

$$
2 f_{M(G)}(Q)+\sum_{v_{i} \in V(Q)} w\left(u_{i}\right) \min _{v \in Q} d\left(u_{i}, v\right) \geq 2 f_{M(G)}(P)+\sum_{v_{i} \in V(P)} w\left(u_{i}\right) \min _{v \in P} d\left(u_{i}, v\right) .
$$

This means that $f_{M(G)}(Q) \geq f_{M(G)}(P)$. But Q is a median path in $M(G)$. Thus $f_{M(G)}(Q)=f_{M(G)}(P)$.

Subcase 1.2. $|V(Q)|<|V(P)|$.
Let $|V(Q)|=k$, where $k<|P|$. By a new labeling of the vertices of G we let $V(Q)=\left\{v_{1}^{Q}, v_{2}^{Q}, \ldots, v_{k}^{Q}\right\}$, where for $i=1,2, \ldots, k-1, v_{i}^{Q}$ is adjacent to v_{i+1}^{Q}.

For $i=1,2, \ldots, k$ let $T_{v_{i}^{Q}}$ be a path with maximum number of vertices between v_{i}^{Q} and a vertex z_{i} in $V(G) \backslash V(Q)$ such that

$$
V\left(T_{v_{i}^{Q}}\right) \cap V(Q)=\left\{v_{1}^{Q}, \ldots, v_{i}^{Q}\right\} .
$$

Since $k<|P|$, there is an integer $j \in\{1,2, \ldots, k\}$ such that the number of vertices on $T_{v_{j}}$ between v_{j}^{Q} and z_{j} is greater than $\min \{j, k-j+1\}$. Without loss of generality assume that the number of vertices on $T_{v_{j}^{Q}}$ between v_{j}^{Q} and z_{j} is greater than j. Let $x_{1}, x_{2}, \ldots, x_{j-1}$ be $j-1$ vertices on $T_{v_{j}^{Q}}$ such that v_{j}^{Q} is adjacent to x_{1}, and x_{i} is adjacent to x_{i+1} for $i=1,2, \ldots, j-2$. We remove $v_{1}^{Q}, v_{2}^{Q}, \ldots, v_{j-1}^{Q}$ from Q and add $x_{1}, x_{2}, \ldots, x_{j-1}$ to obtain a path Q_{1} in G. It follows that $f_{G}\left(Q_{1}\right) \leq f_{G}(Q)$ and $f_{M(G)}\left(Q_{1}\right) \leq f_{M(G)}(Q)$. Since Q is a median path in $M(G)$, we obtain

$$
\begin{equation*}
f_{M(G)}\left(Q_{1}\right)=f_{M(G)}(Q) \tag{5}
\end{equation*}
$$

On the other hand P is a median path in G. So $f_{G}\left(Q_{1}\right) \geq f_{G}(P)$. Also

$$
\sum_{v_{i} \in V\left(Q_{1}\right)} w\left(u_{i}\right) \min _{v \in Q_{1}} d\left(u_{i}, v\right)=\sum_{v_{i} \in V(P)} w\left(u_{i}\right) \min _{v \in P} d\left(u_{i}, v\right) .
$$

So

$$
\begin{gathered}
2 f_{M(G)}\left(Q_{1}\right)+\sum_{v_{i} \in V\left(Q_{1}\right)} w\left(u_{i}\right) \min _{v \in Q_{1}} d\left(u_{i}, v\right) \geq \\
2 f_{M(G)}(P)+\sum_{v_{i} \in V(P)} w\left(u_{i}\right) \min _{v \in P} d\left(u_{i}, v\right) .
\end{gathered}
$$

Thus $f_{M(G)}\left(Q_{1}\right) \geq f_{M(G)}(P)$. Now (5) implies that $f_{M(G)}(Q) \geq f_{M(G)}(P)$. But Q is a median path in $M(G)$. We conclude that $f_{M(G)}(Q)=f_{M(G)}(P)$.

Case 2. $V(Q) \cap U \neq \emptyset$. For any vertex $u_{t} \in V(Q) \cap U$, we replace u_{t} by v_{t} to obtain a path Q_{1} in G. Now similar to the previous case, we obtain $f_{M(G)}(Q)=f_{M(G)}(P)$.

Now the result follows by an induction.
Theorem 2. Let P be a central path in a graph G. For any positive integer $k \geq 1, P$ is a central path in $M^{k}(G)$.

The proof of Theorem 2 is similar to the proof of Theorem 1, and therefore is omitted.

References

[1] Beeker, R. I., Lari, I., and Scozzari, A. 2007. Algorithms for central-median paths with bounded length on trees, European Journal of Operational Research 179, 1208-1220.
[2] Buckley, F., and Harary, F. 1990. Distance in Graphs, Addison-Wesley.
[3] Hakimi, S.L., Schmeichel, E.F., and Labbe, M. 1993. On locating path- or tree-shaped facilities on networks, Networks, vol. 23, pp. 543555.
[4] Labbe, M., Laporte, G., and Martin, R. 1998. Path, tree cycle location, in Fleet Management and Logistics, T.G. Crainic and G. Laporte (Eds.), Kluwer.
[5] Lari, I., Ricca, F., and Scozzari, A. 2008. Comparing different metaheuristic approaches for the median path problem with bounded length, European Journal of Operational Research 190, 587597.
[6] Minieka, E. 1985. The optimal location of a path or tree in a tree network, Networks, vol. 15, pp. 309321.
[7] Minieka E., and Patel, N. H. 1983. On finding the core of a tree with a specified length, Journal of Algorithms, vol. 4, pp. 345352.
[8] Morgan, C. A., and Slater, P. J. 1980. A linear algorithm for a core of a tree, Journal of Algorithms, vol. 1, pp. 247258.
[9] Richey, M. B. 1990. Optimal location of a path or tree on a network with cycles, Networks, vol. 20, pp. 391407.
[10] Slater, P. J. 1982. Locating central paths in a graph, Transportation Science, vol. 16, pp. 118.
[11] West, D.B. (2001), Introduction to graph theory, (2nd edition), Prentice Hall, USA.

Nader Jafari Rad
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
email: n.jafarirad@gmail.com

