DIFFERENTIAL OPERATORS FOR P-VALENT FUNCTIONS

Mohamed K. Aouf

Abstract. Let $f(z)=D(F(z))$, where D is differential operator defined separtely in every result. Let $S(p)$ denote the class of functions $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ which are analytic and p -valent in the unit disc $U=\{z:|z|<1\}$. The purpose of this is paper to find out the disc in which the operator D transforms some classes of p -valent functions into the same. For example, if F is p -valent starlike of order $\lambda(0 \leq \lambda<p)$, then the disc in which f is also in the same class is found. We also discuss several special cases which can be derived from our main results.

Keywords: p-Valent, analytic, starlike, close-to-convex, Bazilevic functions.
2000 Mathematics Subject Classification: 30C45.

1.Introduction

Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$. Further let $S(p)$ be the subclass of $A(p)$ consisting of functions which are p-valent in U. A function $f(z) \in S(p)$ is said to be in the class $S_{p}^{*}(\lambda)$ of p -valently starlike functions of order $\lambda(0 \leq \lambda<p)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\lambda \text { and } \int_{0}^{2 \pi} \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} d \theta=2 \pi p \tag{2}
\end{equation*}
$$

The class $S_{p}^{*}(\lambda)$ was studied recently by Owa [8] and Aouf et al. [2].

Let $K_{p}(\gamma, \lambda)$ denote the class of functions $F(z) \in A(p)$ which satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z F^{\prime}(z)}{G(z)}\right\}>\gamma \quad(z \in U) \tag{3}
\end{equation*}
$$

where $G(z) \in S_{p}^{*}(\lambda)$ and $0 \leq \gamma, \lambda<p$. The class $K_{p}(\gamma, \lambda)$ of p-valenty close-toconvex functions of order γ and type λ was studied by Aouf [1]. We note that $K_{1}(\gamma, \lambda)=K(\gamma, \lambda)$, the class of convex functions of order γ and type λ was studied by Libera [4] and $K_{1}(1,1)=K$, is the well-known class of close-to-convex functions, introduced by Kaplan [3].

A function $F(z) \in S(p)$ is said to be in the class $B_{p}(\beta, \lambda)$ if and only if there exists a function $G(z) \in S_{p}^{*}(\lambda), 0 \leq \lambda<p, \beta>0$, such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z F^{\prime}(z)}{F^{1-\beta}(z) G^{\beta}(z)}\right\}>0 \quad(z \in U) . \tag{4}
\end{equation*}
$$

The class $B_{p}(\beta, \lambda)$ is the subclass of p -valently Bazilevic functions in U.
We note that $B_{p}(\beta, 0)=B_{p}(\beta)$, is the class of p -valently Bazilevic functions of type β and $B_{1}(\beta, 0)=B(\beta)$, is the class of Bazilevic functions of type β (see [10]).

2.Main Results

We shall consider some differential operators and find out the disc in which the classes of p-valent functions defined by (2), (3) and (4), respectively, are preserved under these operators. We prove the following:
Theorem 1. Let $F(z) \in S_{p}^{*}(\lambda)(0 \leq \lambda<p), \beta>0$ and $0<\alpha \leq 1$. Let the function $f(z)$ be defined by the differential operator

$$
\begin{equation*}
D_{\alpha, \beta, p}(F)=f^{\beta}(z)=\frac{1}{\alpha \beta p-\alpha+1}\left[(1-\alpha) F^{\beta}(z)+\alpha z\left(F^{\beta}(z)\right)^{\prime}\right] . \tag{5}
\end{equation*}
$$

Then $f(z) \in S_{p}^{*}(\lambda)$ for $|z|<r_{0}$, where
$r_{0}=\frac{\alpha \beta p-\alpha+1}{\left[\alpha(\beta p-\beta \lambda+1)+\sqrt{\alpha^{2}(\beta p-\beta \lambda+1)^{2}+(\alpha \beta p-\alpha+1)(1-\alpha \beta p+2 \alpha \beta \lambda-\alpha)}\right.}$.
The result is sharp.
Proof. We can write

$$
\begin{equation*}
f^{\beta}(z)=\frac{1}{\alpha \beta p-\alpha+1}\left[(1-\alpha) F^{\beta}(z)+\alpha z\left(F^{\beta}(z)\right)^{\prime}\right] \tag{7}
\end{equation*}
$$

as

$$
f^{\beta}(z)=\frac{1}{\alpha \beta p-\alpha+1}\left[\alpha z^{2-\frac{1}{\alpha}}\left(z^{\frac{1}{\alpha}-1} F^{\beta}(z)\right)^{\prime}\right],
$$

and from this it follows that

$$
\begin{equation*}
F^{\beta}(z)=\left(\beta p+\frac{1}{\alpha}-1\right) z^{1-\frac{1}{\alpha}} \int_{0}^{z} z^{\frac{1}{\alpha}-2} f^{\beta}(z) d z . \tag{8}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\beta \frac{z F^{\prime}(z)}{F(z)}=\left(1-\frac{1}{\alpha}\right)+\frac{z^{\frac{1}{\alpha}-1} f^{\beta}(z)}{\int_{0}^{z} z^{\frac{1}{\alpha}-2} f^{\beta}(z) d z} . \tag{9}
\end{equation*}
$$

Since $F(z) \in S_{p}^{*}(\lambda)$, we can write (9) as

$$
\begin{aligned}
& \beta(p-\lambda) h(z) \int_{0}^{z} z^{\frac{1}{\alpha}-2} f^{\beta}(z) d z+\beta \lambda \int_{0}^{z} z^{\frac{1}{\alpha}-2} f^{\beta}(z) d z \\
= & \left(1-\frac{1}{\alpha}\right) \int_{0}^{z} z^{\frac{1}{\alpha}-2} f^{\beta}(z) d z+z^{\frac{1}{\alpha}-1} f^{\beta}(z),
\end{aligned}
$$

where $\operatorname{Re} h(z)>0$. Differentiating again with respect to z, we obtain

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=(p-\lambda) h(z)+\lambda+\frac{(p-\lambda) h^{\prime}(z) \int_{0}^{z} z^{\frac{1}{\alpha}-2} f^{\beta}(z) d z}{z^{\frac{1}{\alpha}-2} f^{\beta}(z)} . \tag{10}
\end{equation*}
$$

Now, using a well-known result [4],

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \leq \frac{2 \operatorname{Re}(z)}{1-r^{2}} \quad(|z|=r), \tag{11}
\end{equation*}
$$

we have from (10

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\lambda\right\} \geq \operatorname{Reh}(z)\{(p-\lambda)-
$$

$$
\begin{equation*}
\left.\frac{2(p-\lambda)}{1-r^{2}}\left|\frac{\int_{0}^{z} z^{\frac{1}{\alpha}-2} f^{\beta}(z) d z}{z^{\frac{1}{\alpha}-2} f^{\beta}(z)}\right|\right\} \tag{12}
\end{equation*}
$$

Also, from (7) and (8), we have

$$
\begin{aligned}
\frac{z^{\frac{1}{\alpha}-1} f^{\beta}(z)}{\int_{0}^{z} z^{\frac{1}{\alpha}-2} f^{\beta}(z) d z} & =\frac{\alpha z\left(z^{\frac{1}{\alpha}-1} F^{\beta}(z)\right)^{\prime}}{\alpha\left(z^{\frac{1}{\alpha}-1} F^{\beta}(z)\right)} \\
& =\left(\frac{1}{\alpha}-1\right)+\beta \frac{z F^{\prime}(z)}{F(z)} \\
& =\left(\frac{1}{\alpha}-1\right)+\beta[(p-\lambda) h(z)+\lambda]
\end{aligned}
$$

since $F(z) \in S_{p}^{*}(\lambda)$. Thus we have

$$
\begin{align*}
\left|\frac{z^{\frac{1}{\alpha}-1} f^{\beta}(z)}{\int_{0}^{z} z^{\frac{1}{\alpha}-2} f^{\beta}(z) d z}\right| & \geq \operatorname{Re}\left\{\left(\frac{1}{\alpha}-1\right)+\beta[(p-\lambda) h(z)+\lambda]\right\} \\
& \geq\left(\frac{1}{\alpha}-1\right)+\beta \lambda+\beta(p-\lambda) \frac{1-r}{1+r} \\
& =\frac{\left(\frac{1}{\alpha}-1+\beta \lambda\right)(1+r)+(\beta p-\beta \lambda)(1-r)}{1+r} \tag{13}
\end{align*}
$$

Hence, from (12) and (13), we have

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\lambda\right\} \geq \operatorname{Reh}(z)\{(p-\lambda)- \\
& {\left.\left[\frac{2(p-\lambda)}{(1+r)(1-r)}\right] \frac{r(1+r)}{\left(\frac{1}{\alpha}-1+\beta \lambda\right)(1+r)+(\beta p-\beta \lambda)(1-r)}\right\} } \\
&=(p-\lambda) \operatorname{Re} h(z) . \\
& \cdot\left\{\frac{\left(\beta p+\frac{1}{\alpha}-1\right)-2(\beta p-\beta \lambda+1) r-\left(\frac{1}{\alpha}-\beta p+2 \beta \lambda-1\right) r^{2}}{(1-r)\left(\beta p+\frac{1}{\alpha}-1\right)+\left(\frac{1}{\alpha}-\beta p+2 \beta \lambda-1\right) r}\right\} . \tag{14}
\end{align*}
$$

The right-hand side of (50) is positive for $r<r_{0}, 0<\alpha \leq 1, \beta>0$ and $0 \leq \lambda<p$, where r_{0} is given by the relation (6).

The function $f_{0}(z)$ defined by:

$$
\begin{equation*}
f_{0}^{\beta}(z)=\frac{1}{\alpha \beta p-\alpha+1}\left[(1-\alpha) F_{0}^{\beta}(z)+\alpha z\left(F_{0}^{\beta}(z)\right)^{\prime}\right] \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{0}(z)=\frac{z^{p}}{(1-z)^{2(p-\lambda)}} \in S_{p}^{*}(\lambda) \tag{16}
\end{equation*}
$$

shows that the result is sharp.
Putting $\beta=1$ in Theorem 1, we obtain
Corollary 1. Let $F(z) \in S_{p}^{*}(\lambda)(0 \leq \lambda<p)$, and $0<\alpha \leq 1$. Let the function $f(z)$ be defined by the differential operator

$$
\begin{equation*}
D_{\alpha, 1, p}(F)=f(z)=\frac{1}{\alpha p-\alpha+1}\left[(1-\alpha) F(z)+\alpha z F^{\prime}(z)\right] . \tag{17}
\end{equation*}
$$

Then $f(z) \in S_{p}^{*}(\lambda)$ for $|z|<r_{0}^{*}$, where

$$
\begin{equation*}
r_{0}^{*}=\frac{\alpha p-\alpha+1}{\alpha(p-\lambda+1)+\sqrt{\alpha^{2}(p-\lambda+1)^{2}+(\alpha p-\alpha+1)(1-\alpha p+2 \alpha \lambda-\alpha)}} . \tag{18}
\end{equation*}
$$

The result is sharp.
Putting $\beta=1$ and $\lambda=0$ in Theorem 1, we have
Corollary 2. Let $F(z) \in S_{p}^{*}$ and $0<\alpha \leq 1$. Let the function $f(z)$ be defined by the differential operator (53). Then $f(z) \in S_{p}^{*}$ for $|z|<r_{0}^{* *}$, where

$$
\begin{equation*}
r_{0}^{* *}=\frac{\alpha p-\alpha+1}{\alpha(p+1)+\sqrt{\alpha^{2}(p+1)^{2}+(\alpha p-\alpha+1)(1-\alpha p-\alpha)}} . \tag{19}
\end{equation*}
$$

The result is sharp.
Remark 1. (1) Putting $p=1$ in Theorem 1, we obtain the result obtained by Noor [6];
(2) Putting $p=1$ in Corollary 2, we obtain the result obtained By Noor et al. [7];
(3) Putting $p=1$ and $\alpha=\frac{1}{2}$ in Corollary 2, we obtain the result obtained by Livingston [5];
(4) Theorem 1 generalizes a result due to Padmanabhan [9] when we take $p=$ $\beta=1$ and $\alpha=\frac{1}{2}$.
Theorem 2. Let $F(z) \in K_{p}(\gamma, \lambda)(0 \leq \gamma, \lambda<p)$ and let $\alpha>0$. Then the function $f(z)$, defined as

$$
\begin{equation*}
D_{\alpha, 1, p}(F)=f(z)=(1-\alpha) F(z)+\alpha z F^{\prime}(z) \tag{20}
\end{equation*}
$$

belongs to the same class for $|z|<R_{0}, R_{0}=\min \left(r_{1}, r_{2}\right)$, where r_{1} and r_{2} are the respective least positive roots of the equations

$$
\begin{equation*}
\left(p-1+\frac{1}{\alpha}\right)-2(p+1-\lambda) r-\left(\frac{1}{\alpha}+2 \lambda-(p+1)\right) r^{2}=0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(p-1+\frac{1}{\alpha}\right)-2(p+1-\gamma) r-\left(\frac{1}{\alpha}+2 \gamma-(p+1)\right) r^{2}=0 . \tag{22}
\end{equation*}
$$

The result is sharp.
Proof. Since $F(z) \in K_{p}(\gamma, \lambda)$, then there exists a function $G(z) \in S_{p}^{*}(\lambda)$ such that $\operatorname{Re}\left\{\frac{z F^{\prime}(z)}{G(z)}\right\}>\gamma, z \in U$. Now let

$$
\begin{equation*}
D_{\alpha, 1, p}(G)=g(z)=(1-\alpha) G(z)+\alpha z G^{\prime}(z) . \tag{23}
\end{equation*}
$$

Then, from Theorem 1, it follows that $g(z) \in S_{p}^{*}(\lambda)$ for $|z|<r_{1}$, where r_{1} is the least positive root of (57).

Using the same technique of Theorem 1 , we can easily show that $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>\gamma$ for $|z|<R_{0}$, where $R_{0}=\min \left(r_{1}, r_{2}\right)$ and r_{2} is given by (58). The sharpness of the result can be seen as follows:

Let

$$
F_{1}(z)=\frac{z^{p}}{(1-z)^{2(p-\gamma)}} \text { and } G_{1}(z)=\frac{z^{p}}{(1-z)^{2(p-\lambda)}} .
$$

Then

$$
R e \frac{z F_{1}^{\prime}(z)}{G_{1}(z)}>\gamma, G_{1} \in S_{p}^{*}(\lambda) \Rightarrow F_{1} \in K_{p}(\gamma, \lambda) .
$$

Let $f_{1}(z)=(1-\alpha) F_{1}(z)+\alpha z F_{1}^{\prime}(z)$ and $g_{1}(z)=(1-\alpha) G_{1}(z)+\alpha z G_{1}^{\prime}(z)$. Then $\operatorname{Re} \frac{z f_{1}^{\prime}(z)}{g_{1}(z)}>\gamma$ for $|z|<R_{0}$, where R_{0} is as given in Theorem 2 and can not be improved.
Remark 2. (1) Putting $p=1$ in Theorem 2, we obtain the result obtained by Noor [6];
(2) Putting $p=1$ and $\gamma=\lambda=0$ in Theorem 2, we obtain the result obtained By Noor et al. [7];
(3) Putting $p=1, \gamma=\lambda=0$ and $\alpha=\frac{1}{2}$ in Theorem 2, we obtain the result obtained by Livingston [5];
(4) Putting $p=1$ and $\alpha=\frac{1}{2}$ in Theorem 2, we obtain the result obtained by Padmanabhan[9].
Theorem 3. Let $0<\alpha \leq \beta \leq 1$ and $F(z) \in S_{p}^{*}(\lambda)(0 \leq \lambda<p)$. Then $f(z)$ defined as

$$
\begin{equation*}
D_{\alpha, \beta, p}^{*}(F)=f^{\alpha}(z)=z^{\alpha}\left(z^{1-\beta} F^{\beta}(z)\right)^{\prime} . \tag{24}
\end{equation*}
$$

belongs to $S_{p}^{*}\left(\lambda_{1}\right)$ for $|z|<R_{1}$, where R_{1} is given by

$$
\begin{equation*}
R_{1}=\frac{1}{(\beta p-\beta \lambda+1)+\sqrt{\beta^{2}(p-\lambda)^{2}+\beta(1-p)[\beta(1+p-2 \lambda)-2]}}, \tag{25}
\end{equation*}
$$

and

$$
\lambda_{1}=1-\frac{\beta}{\alpha}(1-\lambda) .
$$

The result is sharp.
Proof. From (2.20), we can write

$$
F^{\beta}(z)=z^{\beta-1} \int_{0}^{z}\left(\frac{f(z)}{z}\right)^{\alpha} d z
$$

and so

$$
\begin{equation*}
\beta \frac{z F^{\prime}(z)}{F(z)}=(\beta-1)+\frac{z\left(\frac{f(z)}{z}\right)^{\alpha}}{\int_{0}^{z}\left(\frac{f(z)}{z}\right)^{\alpha} d z} . \tag{26}
\end{equation*}
$$

Since $F(z) \in S_{p}^{*}(\lambda), \frac{z F^{\prime}(z)}{F(z)}=(p-\lambda) h(z)+\lambda, 0 \leq \lambda<p, \operatorname{Re} h(z)>0, z \in U$. Thus, from (2.22), we obtain

$$
\beta(p-\lambda) h(z) \int_{0}^{z}\left(\frac{f(z)}{z}\right)^{\alpha} d z+[\beta \lambda+(1-\beta)] \int_{0}^{z}\left(\frac{f(z)}{z}\right)^{\alpha} d z=z\left(\frac{f(z)}{z}\right)^{\alpha} .
$$

Differentiating again with respect to z, we obtain

$$
\begin{gathered}
\beta(p-\lambda) h(z)\left(\frac{f(z)}{z}\right)^{\alpha}+\beta(p-\lambda) h^{\prime}(z) \int_{0}^{z}\left(\frac{f(z)}{z}\right)^{\alpha} d z+[\beta \lambda+(1-\beta)]\left(\frac{f(z)}{z}\right)^{\alpha} \\
=\alpha z^{1-\alpha} f^{\alpha-1}(z) f^{\prime}(z)+(1-\alpha)\left(\frac{f(z)}{z}\right)^{\alpha}
\end{gathered}
$$

or

$$
\frac{z f^{\prime}(z)}{f(z)}-\left[1-\frac{\beta}{\alpha}(1-\lambda)\right]
$$

$$
\begin{equation*}
=\frac{\beta}{\alpha}(p-\lambda)\left[h(z)+\frac{h^{\prime}(z) \int_{0}^{z}\left(\frac{f(z)}{z}\right)^{\alpha} d z}{\left(\frac{f(z)}{z}\right)^{\alpha}}\right] . \tag{27}
\end{equation*}
$$

Now, using the well-known result (11), we have from (2.23),

$$
\begin{gathered}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}-\left[1-\frac{\beta}{\alpha}(1-\lambda)\right] \geq \\
\frac{\beta}{\alpha}(p-\lambda) \operatorname{Re} h(z)\left[1-\frac{2}{1-r^{2}}\left|\frac{\int_{0}^{z}\left(\frac{f(z)}{z}\right)^{\alpha} d z}{\left(\frac{f(z)}{z}\right)^{\alpha}}\right|\right] .
\end{gathered}
$$

Now

$$
\begin{aligned}
& \frac{z\left(\frac{f(z)}{z}\right)^{\alpha}}{\int_{0}^{z}\left(\frac{f(z)}{z}\right)^{\alpha} d z}=\frac{z\left(z^{1-\beta} F^{\beta}(z)^{\prime}\right.}{z^{1-\beta} F^{\beta}(z)} \\
&=\beta \frac{z F^{\prime}(z)}{F(z)}+(1-\beta) \\
&=\beta[(p-\lambda) h(z)+\lambda]+(1-\beta), \operatorname{Re} h(z)>0,
\end{aligned}
$$

and from this, it follows that

$$
\begin{aligned}
\left|\frac{z\left(\frac{f(z)}{z}\right)^{\alpha}}{z \int_{0}\left(\frac{f(z)}{z}\right)^{\alpha} d z}\right| & \geq \beta(p-\lambda) \operatorname{Reh}(z)+\beta \lambda+(1-\beta) \\
& \geq \beta(p-\lambda) \frac{1-r}{1+r}+\beta \lambda+(1-\beta) \\
& =\frac{\beta(p-\lambda)(1-r)+(\beta \lambda+(1-\beta))(1+r)}{(1+r)} .
\end{aligned}
$$

Hence

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}-\left[1-\frac{\beta}{\alpha}(1-\lambda)\right] \geq \frac{\beta}{\alpha}(p-\lambda) \operatorname{Re} h(z) .
$$

$$
\begin{gather*}
\cdot\left\{1-\frac{2}{1-r^{2}} \frac{r(1+r)}{\beta(p-\lambda)(1-r)+(\beta \lambda+(1-\beta))(1+r)}\right\} \\
=\frac{\beta}{\alpha}(p-\lambda) \operatorname{Reh}(z)\left\{\frac{(1-r)[\beta(p-\lambda)(1-r)+(\beta \lambda+(1-\beta))(1+r)]-2 r}{(1-r)[\beta(p-\lambda)(1-r)+(\beta \lambda+(1-\beta))(1+r)]}\right\} . \tag{28}
\end{gather*}
$$

The right-hand side of the inequality (2.24) is positive for $|z|<R_{1}$, where R_{1} is the least positive root of the equation

$$
\begin{equation*}
(1-\beta p-\beta+2 \beta \lambda) r^{2}+2(\beta p-\beta \lambda+1) r-(\beta p-\beta+1)=0 \tag{29}
\end{equation*}
$$

and thus we obtain the required result. The function

$$
\begin{equation*}
F_{1}(z)=\frac{z^{p}}{(1-z)^{2(p-\lambda)}} \in S_{p}^{*}(\lambda) \tag{30}
\end{equation*}
$$

shows that the result is best possible.
Putting $\lambda=\frac{1}{2}$ in Theorem 3, we obtain
Corollary 3. Let $0<\alpha \leq \beta \leq 1$ and $F(z) \in S_{p}^{*}\left(\frac{1}{2}\right)$. Then $f(z)$ defined by (2.20) belongs to $S_{p}^{*}\left(1-\frac{\beta}{2 \alpha}\right)$ for $|z|<R_{2}$, where R_{2} is given by

$$
\begin{equation*}
R_{2}=\frac{2}{(2 \beta p-\beta+2)+\sqrt{\beta^{2}(2 p-1)^{2}+8+\beta(1-p)(p-2)}} \tag{31}
\end{equation*}
$$

The result is sharp.
Remark 3. (1) Putting $p=1$ in Theorem 3, we obtain the result obtained by Noor [6];
(2) Putting $\alpha=\beta$ and $F(z) \in S_{p}^{*}(\lambda)$. Then $f(z)$ defined by (2.20) also belongs to $S_{p}^{*}(\lambda)$ for $|z|<R_{1}$;
(3) Putting $p=1$ in Corollary 3, we obtain the result obtained by Noor [6].

Using the same technique of Theorem 3 we can prove the following theorem.
Theorem 4. Let $F(z) \in B_{p}(\beta, \lambda), 0<\beta \leq 1$ and $0 \leq \lambda<p$. Let $f(z)$ be defined as

$$
f^{\beta}(z)=z^{\beta}\left(z^{1-\beta} F^{\beta}(z)\right)^{\prime}
$$

Then $f(z) \in B_{p}(\beta, \lambda)$ for $|z|<R_{3}$, where R_{3} is given by

$$
\begin{equation*}
R_{3}=\frac{1}{(\beta p-\beta+1)+\sqrt{\beta^{2}(p-\lambda)^{2}+2+\beta(1-p)[\beta(1+p-2 \lambda)-2]}} . \tag{32}
\end{equation*}
$$

The result is sharp.

References

[1] M. K. Aouf, On a class of p-valent close-to-convex functions, Internat. J. Math. Math. Sci., 11, no.2, (1988), 259-266.
[2] M. K. Aouf, H. M. Hossen and H. M. Srivastava, Some families of multivalent functions, Comput. Math. Appl., 39, (2000), 39-48.
[3] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., (1952), 169-185.
[4] R. J. Libera, Some radius of convexity problems, Duke Math. J., 31, (1964), 143-158.
[5] A. E. Livingston, On the radius of univalent of certain analytic functions, Proc. Amer. Math. Soc., 17, (1966), 352-357.
[6] K. I. Noor, Differential operators for univalent functions, Math. Japon., 32, no.3, (1987), 427-436.
[7] K. I. Noor, F. M. Aloboudi and N. Aldihan, On the radius of univalence of convex combinations of analytic functions, Internat J. Math. Math. Sci., 6, no.2, (1983), 335-340.
[8] S. Owa, Some properties of certain multivalent functions, Appl. Math. Letters, 4, no.5, (1991), 79-83.
[9] K. S. Padmanabhan, On the radius of univalence of certain class of analytic functions, J. London Math. Soc., 1, (1969), 225-231.
[10] D. K. Thomas, Bazilevic functions, Trans. Amer. Math. Soc., 132, (1968), 353-361.

Mohamed K. Aouf
Department of Mathematics, Faculty of Science Mansoura University, Mansoura 35516, Egypt.
email: mkaouf127@yahoo.com.

