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Abstract. The aim of this paper is to introduced subclasses of Janowski functions
with bounded boundary and bounded radius rotations of complex order b and of type ρ.
And also to study the mapping properties of these classes under certain integral operators
defined and studied by Breaz et. al recently.
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1. Introduction

Let A be the class of functions f (z) of the form

f (z) = z +
∞∑

n=2

anzn,

which are analytic in the open unit disc E = {z : |z| < 1}. Let Cb (ρ) and S∗b (ρ)
be the classes of convex and starlike functions of complex order b (b ∈ C− {0}) and
type ρ (0 ≤ ρ < 1) respectively studied by Frasin [5].
Let P [A,B] be the class of functions h (z), analytic in E with h (0) = 1 and

h (z) ≺ 1 + Az

1 + Bz
, − 1 ≤ B < A ≤ 1,

where the symbol ≺ stands for subordination. This class was introduced by Janowski
[6]. It is noted that P [1,−1] ≡ P , where P is the well-known class of functions with
positive real parts. Noor [9] generalized this concept of janowski functions and
defined the class Pk[A,B] as follows.
A function p (z) is said to be in the class Pk[A,B], if and only if,

p (z) =
(

k

4
+

1
2

)
h1 (z)−

(
k

4
− 1

2

)
h2 (z) , (1.1)
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where h1 (z) , h2 (z) ∈ P [A,B]. It is clear that P2[A,B] ≡ P [A,B] and Pk[1,−1] ≡
Pk, the well-known class given and studied by Pinchuk [13].
The important fact about the class Pk[A,B] is that this class is convex set. That is,
for pi (z) ∈ Pk[A,B] and αi ∈ R with 1 ≤ i ≤ n, we have

n∑
i=1

αipi (z) ∈ Pk[A,B]. (1.2)

This can be easily seen from (1.1) by using the fact that the set P [A,B] is convex
[10]. By using all these concepts, we define the following classes.
A function f (z) ∈ A is said to belong to the class Vk[A,B, ρ, b], if and only if,

1
1− ρ

[(
1 +

1
b

zf ′′(z)
f ′(z)

)
− ρ

]
∈ Pk [A,B] ,

where −1 ≤ B < A ≤ 1, k ≥ 2, 0 ≤ ρ < 1 and b ∈ C− {0}. When ρ = 0 and b = 1,
we obtain the class Vk [A,B] of janowski functions with bounded boundary rotation,
first discussed by Noor [9].
Similarly, an analytic function f (z) ∈ Rk[A,B, ρ, b], if and only if,

1
1− ρ

[
1 +

1
b

(
zf ′(z)
f(z)

− 1
)
− ρ

]
∈ Pk [A,B] ,

where −1 ≤ B < A ≤ 1, k ≥ 2, 0 ≤ ρ < 1 and b ∈ C − {0}. When ρ = 0 and
b = 1, we obtain the class Rk [A,B] of functions with bounded radius rotation, first
discussed by Noor [9].
Let us consider the integral operators

Fn(z) =

z∫
0

(
f1(t)

t

)α1

· · ·
(

fn(t)
t

)αn

dt (1.3)

and

Fα1...αn(z) =

z∫
0

[
f ′1 (t)

]α1 . . .
[
f ′n (t)

]αn dt, (1.4)

where fi (z) ∈ A and αi > 0 for all i ∈ {1, 2, . . . , n}.
These operators, given by (1.3) and (1.4), are introduced and studied by Breaz and
Breaz [2] and Breaz et.al [4], respectively. Later on, Breaz and Güney [3] considered
the above integral operators and they obtained their properties on the classes Cb (ρ),
S∗b (ρ) of convex and starlike functions of complex order b and type ρ introduced
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and studied by Frasin [5]. Recently, Noor [11] discussed the effect of these integral
opeartors on the classes Vk (ρ, b) and Rk (ρ, b) .
In this paper, we investigate some propeties of the above integral operators Fn(z)
and Fα1...αn(z) for the classes Vk[A,B, ρ, b] and Rk[A,B, ρ, b] respectively.
In order to derive our main result, we need the following lemmas.

2. Preliminary Lemmas

Lemma 2.1. Let β, γ, A ∈ C with Re [β + γ] > 0 and let B ∈ [−1, 0] satisfy
either

Re
[
β [1 + ((1− ρ) A + ρB) B] + γ

(
1 + B2

)]
≥∣∣((1− ρ) A + ρB) β + βB + B (γ + γ)

∣∣ ,
when B ∈ (−1, 0], or

Reβ [1 + (1− ρ) A + ρB] > 0 and Re [β [1− ((1− ρ) A + ρB)] + 2γ] ≥ 0,

when B = −1. If h (z) = 1 + cnzn + cn+1z
n+1... satisfies{

h(z) +
nzh′(z)

βh(z) + γ

}
≺ 1 + {(1− ρ)A + ρB} z

1 + Bz
, (2.1)

then
h(z) ≺ Q(z) ≺ 1 + {(1− ρ)A + ρB} z

1 + Bz
, (2.2)

where
Q(z) =

1
βG(z)

− γ

β
,

and

G(z) =


1
n

1∫
0

[
1+Btz
1+Bz

] β
n

(1−ρ)(A
B
−1)

t
β+γ

n
−1dt, B 6= 0,

1
n

1∫
0

e
βA
n

(1−ρ)(t−1)zt
β+γ

n
−1dt, B = 0.

From (2.2), we can deduce the sharp result that h ∈ P (β), with

β = β(ρ, β, γ) = min ReQ(z) = Q(−1).

This result is a special case of one, given in ([7], pp.109).
The following Lemma is a generalization of the result proved in [12].
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Lemma 2.2. Let f (z) ∈ Vk [A,B, ρ] . Then, f (z) ∈ Rk [A,B, β], where

β = β1(ρ, 1, 0) =
B

[
(1− ρ)

(
A
B − 1

)
+ 1

]
(1−B)(1−ρ)(1−A

B ) − (1−B)
, B 6= 0. (2.3)

Proof. Let
zf ′(z)
f(z)

= p(z) =
(

k

4
+

1
2

)
h1 (z)−

(
k

4
− 1

2

)
h2 (z) . (2.4)

Logarithmic differentiation of (2.4) yields

(zf ′(z))′

f ′(z)
= p(z) +

zp′(z)
p(z)

.

Since f (z) ∈ Vk [A,B, ρ], it follows that

p(z) +
zp′(z)
p(z)

∈ Pk [A,B, ρ] . (2.5)

Now, we define

φ (z) =
1
2

{
z

(1− z)
+

z

(1− z)2

}
=

z
(
1− z

2

)
(1− z)2

and using (2.4) with convolution technique given by Noor [8], we have

φ (z)
z

∗ p (z) =
(

k

4
+

1
2

) [
φ (z)

z
∗ h1 (z)

]
−

(
k

4
− 1

2

) [
φ (z)

z
∗ h2 (z)

]
,

which implies that

p(z) +
zp′(z)
p(z)

=
(

k

4
+

1
2

) [
h1(z) +

zh′1(z)
h1(z)

]
−

(
k

4
− 1

2

) [
h2(z) +

zh′2(z)
h2(z)

]
. (2.6)

Thus, from (2.5) and (2.6), we have

hi(z) +
zh′i(z)
hi(z)

∈ P [A,B, ρ] , i = 1, 2.

We use Lemma 2.1 with −1 ≤ B < A ≤ 1, n = 1, γ = 0, β = 1 > 0, ρ ∈ [0, 1) and
h = hi in (2.1), to have hi ∈ P [A,B, β], where β is given in (2.3) and consequently
p (z) ∈ Pk [A,B, β], which gives the required result. This estimate is best possible,
extremal function Q (z) is given by

Q(z) =


(1+Bz)−(1+Bz)

(1−ρ)(1−A
B )

Bz[(1−ρ)(A
B
−1)+1] , if B 6= 0,

1−e−(1−ρ)(Az)

(1−ρ)Az , if B = 0.
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3. Main Results

Theorem 3.1. Let fi(z) ∈ Rk[A,B, ρ, b] for 1 ≤ i ≤ n with −1 ≤ B < A ≤ 1,
0 ≤ ρ < 1, b ∈ C− {0}. Also let αi > 0, 1 ≤ i ≤ n. If

n∑
i=1

αi = 1,

then Fn(z) ∈ Vk[A,B, ρ, b].
Proof. From (1.3), we have

zF ′′
n (z)

F ′
n(z)

=
n∑

i=1

αi

(
zf ′i(z)
fi(z)

− 1
)

. (3.1)

By multiplying (3.1) with
1
b
, we have

1
b

zF ′′
n (z)

F ′
n(z)

=
n∑

i=1

αi
1
b

(
zf ′i(z)
fi(z)

− 1
)

or, equivalently

1 +
1
b

zF ′′
n (z)

F ′
n(z)

=
n∑

i=1

αi

[
1 +

1
b

(
zf ′i(z)
fi(z)

− 1
)]

. (3.2)

Subtracting ρ from both sides of (3.2), we have[(
1 +

1
b

zF ′′
n (z)

F ′
n(z)

)
− ρ

]
=

n∑
i=1

αi

[(
1 +

1
b

(
zf ′i(z)
fi(z)

− 1
))

− ρ

]
. (3.3)

Since fi(z) ∈ Rk[A,B, ρ, b] for 1 ≤ i ≤ n, we have[(
1 +

1
b

(
zf ′i(z)
fi(z)

− 1
))

− ρ

]
= (1− ρ) pi (z) , 1 ≤ i ≤ n, (3.4)

where pi (z) ∈ Pk[A,B]. Using (3.4) in (3.3), we obtain[(
1 +

1
b

zF ′′
n (z)

F ′
n(z)

)
− ρ

]
= (1− ρ)

n∑
i=1

αipi (z) .

Using (1.2), we can have

1
1− ρ

[(
1 +

1
b

zF ′′
n (z)

F ′
n(z)

)
− ρ

]
∈ Pk[A,B],
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which implies that Fn(z) ∈ Vk[A,B, ρ, b].

If we take A = 1, B = −1 in Theorem 3.1, we obtain the result proved in [11].
Corollory 3.2. Let fi(z) ∈ Rk (ρ, b) for 1 ≤ i ≤ n with 0 ≤ ρ < 1, b ∈ C − {0}.
Also let αi > 0, 1 ≤ i ≤ n. If

n∑
i=1

αi = 1,

then Fn(z) ∈ Vk (ρ, b).

If k = 2, A = 1, B = −1 in Theorem 3.1, we obtain the result proved in [3].
Corollory 3.3. Let fi(z) ∈ S∗b (ρ) for 1 ≤ i ≤ n with 0 ≤ ρ < 1, b ∈ C− {0}. Also
let αi > 0, 1 ≤ i ≤ n. If

n∑
i=1

αi = 1,

then Fn(z) ∈ Cb (ρ).

Theorem 3.4. Let fi(z) ∈ Vk[A,B, ρ, 1] for 1 ≤ i ≤ n with −1 ≤ B < A ≤ 1,
B 6= 0, 0 ≤ ρ < 1. Also let αi > 0, 1 ≤ i ≤ n. If

n∑
i=1

αi = 1,

then Fn(z) ∈ Vk[A,B, β, 1], where β is given by (2.3).
Proof. From (3.2) with b = 1, we have(

1 +
zF ′′

n (z)
F ′

n(z)

)
=

n∑
i=1

αi

(
zf ′i(z)
fi(z)

)
or, equivalently [(

1 +
zF ′′

n (z)
F ′

n(z)

)
− β

]
=

n∑
i=1

αi

[
zf ′i(z)
fi(z)

− β

]
. (3.5)

Since fi(z) ∈ Vk[A,B, ρ, 1] for 1 ≤ i ≤ n, then by using Lemma 2.2, we have
fi(z) ∈ Rk[A,B, β, 1], where β is given by (2.3). That is,

zf ′i(z)
fi(z)

− β = (1− β) pi (z) , 1 ≤ i ≤ n, (3.6)

where pi (z) ∈ Pk[A,B]. Using (3.6) in (3.5), we obtain[(
1 +

zF ′′
n (z)

F ′
n(z)

)
− β

]
= (1− β)

n∑
i=1

αipi (z) .
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Using (1.2), we can have

1
1− β

[(
1 +

zF ′′
n (z)

F ′
n(z)

)
− β

]
∈ Pk[A,B],

which implies that Fn(z) ∈ Vk[A,B, β, 1].

Set n = 1 with α1 = 1, in Theorem 3.4, we obtain.
Corollory 3.5. Let f(z) ∈ Vk[A,B, ρ] for −1 ≤ B < A ≤ 1, B 6= 0. Then
the Alexandar operator F1(z), defined in [1], belongs to the class Vk[A,B, β] for
−1 ≤ B < A ≤ 1, B 6= 0, where β is given by (2.3) .

For A = 1, B = −1, ρ = 0 and k = 2 in Corollary 3.5, we have the well known result,
that is,

f(z) ∈ C (0) ⇒ F1(z) ∈ C

(
1
2

)
.

By setting A = 1, B = −1 in Theorem 3.4, we obtain the following result.
Corollory 3.6. Let fi(z) ∈ Vk (ρ, 1) for 1 ≤ i ≤ n with 0 ≤ ρ < 1. Also let αi > 0,
1 ≤ i ≤ n. If

n∑
i=1

αi = 1,

then Fn(z) ∈ Vk (β, 1) ,where β is given by (2.3).

The above result in Corollary 3.6 is special case of the results proved in [11].
Theorem 3.7. Let fi(z) ∈ Vk[A,B, ρ, b] for 1 ≤ i ≤ n with −1 ≤ B < A ≤ 1,
0 ≤ ρ < 1, b ∈ C− {0}. Also let αi > 0, 1 ≤ i ≤ n. If

n∑
i=1

αi = 1,

then Fα1...αn(z) ∈ Vk[A,B, ρ, b].
Proof. From (1.4), we have

F ′′
α1...αn

(z)
F ′

α1...αn
(z)

=
n∑

i=1

αi

(
f ′′i (z)
f ′i(z)

)
.

By multiplying both sides with
z

b
, we have

1
b

zF ′′
α1...αn

(z)
F ′

α1...αn
(z)

=
n∑

i=1

αi
1
b

(
zf ′′i (z)
f ′i(z)

)
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This relation is equivalent to[(
1 +

1
b

zF ′′
α1...αn

(z)
F ′

α1...αn
(z)

)
− ρ

]
=

n∑
i=1

αi

[(
1 +

1
b

zf ′′i (z)
f ′i(z)

)
− ρ

]
. (3.7)

Since fi(z) ∈ Vk[A,B, ρ, b] for 1 ≤ i ≤ n, we have(
1 +

1
b

zf ′′i (z)
f ′i(z)

)
− ρ = (1− ρ) pi (z) , 1 ≤ i ≤ n, (3.8)

where pi (z) ∈ Pk[A,B]. Using (3.8) in (3.7), we obtain[(
1 +

1
b

zF ′′
α1...αn

(z)
F ′

α1...αn
(z)

)
− ρ

]
= (1− ρ)

n∑
i=1

αipi (z) .

Using the fact given in (1.2), we get

1
1− ρ

[(
1 +

1
b

zF ′′
α1...αn

(z)
F ′

α1...αn
(z)

)
− ρ

]
∈ Pk[A,B].

This implies that Fα1...αn(z) ∈ Vk[A,B, ρ, b].

When A = 1, B = −1 in Theorem 3.7, we obtain the result proved in [11].
Corollory 3.8. Let fi(z) ∈ Vk (ρ, b) for 1 ≤ i ≤ n with 0 ≤ ρ < 1, b ∈ C − {0}.
Also let αi > 0, 1 ≤ i ≤ n. If

n∑
i=1

αi = 1,

then Fα1...αn(z) ∈ Vk (ρ, b).

If k = 2, A = 1, B = −1 in Theorem 3.7, we have the result discussed in [3].
Corollory 3.9. Let fi(z) ∈ S∗b (ρ) for 1 ≤ i ≤ n with 0 ≤ ρ < 1, b ∈ C− {0}. Also
let αi > 0, 1 ≤ i ≤ n. If

n∑
i=1

αi = 1,

then Fα1...αn(z) ∈ Cb (ρ).
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