Acta Universitatis Apulensis

No. 24/2010
ISSN: 1582-5329

pp. 247-254

∂-HAUSDORFF BICLOSURE SPACES

CHAWALIT BOONPOK

ABSTRACT. The purpose of the present paper is to introduce the concept of ∂ -Hausdorff biclosure spaces and investigate some of their characterizations.

2000 Mathematics Subject Classification: 54A05, 54B05.

1. Introduction

Generalized closed sets, briefly g-closed sets, in a topological space were introduced by N. Levine [7] in order to extend some important properties of closed sets to a larger family of sets. For instance, it was shown that compactness, normality and completeness in a uniform apace are inherited by g-closed subsets. K. Balachandran, P. Sundaram and H. Maki [1] introduced the notion of generalized continuous maps, briefly g-continuous maps, by using g-closed sets and studied some of their properties.

Closure spaces were introduced by E.Čech in [4] and then studied by many authors, see e.g. [5], [8] and [9]. C. Boonpok and J. Khampakdee [2] introduced a new class of closed sets in closure spaces, as for generality, between the class of closed sets and the class of generalized closed sets. Using the concept of ∂ -closed sets, introduced two new kinds of spaces, namely $T'_{\frac{1}{2}}$ -spaces and $T''_{\frac{1}{2}}$ -spaces. The two kinds of spaces are investigated.

J. C. Kelly [6] introduced the notion of bitopological spaces. Such spaces are equipped with two arbitrary topologies. Furthermore, Kelly extended some of the standard results of separation axioms in a topological space to a bitopological space. Thereafter, a large number of papers have been written to generalize topological concepts to bitopological setting. In this, paper we introduce and study the concept of ∂ -Hausdorff biclosure spaces.

2. Preliminaries

An operator $u: P(X) \to P(X)$ defined on the power set P(X) of a set X satisfying the axioms :

- (N1) $u\emptyset = \emptyset$,
- (N2) $A \subseteq uA$ for every $A \subseteq X$,
- (N3) $A \subseteq B \Rightarrow uA \subseteq uB$ for all $A, B \subseteq X$.

is called a *closure operator* and the pair (X, u) is called a *closure space*. For short, the space will be noted by X as well, and called a *closure space*. A closure operator u on a set X is called *idempotent* if uA = uuA for all $A \subseteq X$. A subset A is *closed* in the closure space (X, u) if uA = A and it is *open* if its complement is closed. The empty set and the whole space are both open and closed.

Let (X, u_1) and (X, u_2) be closure spaces. The closure u_1 is said to be *finer* than the closure u_2 , or u_2 is said to be *coarser* than u_1 , by symbols $u_1 \leq u_2$, if $u_2A \supseteq u_1A$ for every $A \subseteq X$. The relation \leq is a partial order on the set of all closure operators on X.

A closure space (Y, v) is said to be a *subspace* of (X, u) if $Y \subseteq X$ and $vA = uA \cap Y$ for each subset $A \subseteq Y$. If Y is closed in (X, u), then the subspace (Y, v) of (X, u) is said to be closed too. A closure space (X, u) is said to be a T_0 -space if, for any pair of points $x, y \in X$, from $x \in u\{y\}$ and $y \in u\{x\}$ it follows that x = y, and it is called a $T_{\frac{1}{2}}$ -space if each singleton subset of X is closed or open. Let (Y, v) be a closed subspace of (X, u). If F is a closed subset of (Y, v), then F is a closed subset of (X, u). Let (X, u) and (Y, v) be closure spaces. A map $f: (X, u) \to (Y, v)$ is said to be *continuous* if $f(uA) \subseteq vf(A)$ for every subset $A \subseteq X$.

One can see that a map $f:(X,u)\to (Y,v)$ is continuous if and only if $uf^{-1}(B)\subseteq f^{-1}(vB)$ for every subset $B\subseteq Y$. Clearly, if $f:(X,u)\to (Y,v)$ is continuous, then $f^{-1}(F)$ is a closed subset of (X,u) for every closed subset F of (Y,v). Let (X,u) and (Y,v) be closure spaces. A map $f:(X,u)\to (Y,v)$ is said to be *closed* (resp. open) if f(F) is a closed (resp. open) subset of (Y,v) whenever F is a closed (resp. open) subset of (X,u).

The product of a family $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ of closure spaces, denoted by $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$, is the closure space $(\prod_{\alpha \in I} X_{\alpha}, u)$ where $\prod_{\alpha \in I} X_{\alpha}$ denotes the cartesian product of sets X_{α} , $\alpha \in I$, and u is the closure operator generated by the projections $\pi_{\alpha} : \prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}) \to (X_{\alpha}, u_{\alpha})$, $\alpha \in I$, i.e., is defined by $uA = \prod_{\alpha \in I} u_{\alpha} \pi_{\alpha}(A)$ for each $A \subseteq \prod_{\alpha \in I} X_{\alpha}$.

Clearly, if $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ is a family of closure spaces, then the projection map $\pi_{\beta} : \prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}) \to (X_{\beta}, u_{\beta})$ is closed and continuous for every $\beta \in I$.

Proposition 2.1. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then F is a closed subset of (X_{β}, u_{β}) if and only if $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$.

Proof. Let F be a closed subset of (X_{β}, u_{β}) . Since π_{β} is continuous, $\pi_{\beta}^{-1}(F)$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. But $\pi_{\beta}^{-1}(F) = F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$, hence $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$.

Conversely, let $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ be a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Since π_{β} is closed,

$$\pi_{\beta}\Big(F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}\Big) = F$$
 is a closed subset of (X_{β}, u_{β}) .

The following statement is evident:

Proposition 2.2. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then G is an open subset of (X_{β}, u_{β}) if and only if $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$.

Definition 2.3.[2] Let (X, u) be a closure space. A subset $A \subseteq X$ is called a generalized closed set, briefly a g-closed set, if $uA \subseteq G$ whenever G is an open subset of (X, u) with $A \subseteq G$. A subset $A \subseteq X$ is called a generalized open set, briefly a g-open set, if its complement is g-closed.

Definition 2.4. [2] Let (X, u) be a closure space. A subset $A \subseteq X$ is called a ∂ -closed set, if $uA \subseteq G$ whenever G is a g-open subset of (X, u) with $A \subseteq G$. A subset $A \subseteq X$ is called a ∂ -open set if its complement is ∂ -closed.

Remark 2.5. For a subset A of a closure space (X, u), the following implications hold :

A is closed \Rightarrow A is ∂ -closed \Rightarrow A is g-closed

None of these implications is reversible as shown by the following examples.

Example 2.6. Let $X = \{1, 2, 3, 4\}$ and define a closure operator u on X by $u\emptyset = \emptyset$, $u\{1\} = \{1, 3\}$, $u\{2\} = \{2, 3\}$, $u\{3\} = u\{4\} = u\{3, 4\} = \{3, 4\}$ and $u\{1, 2\} = u\{1, 3\} = u\{1, 4\} = u\{2, 3\} = u\{2, 4\} = u\{1, 2, 3\} = u\{1, 2, 4\} = u\{2, 3, 4\} = u\{1, 3, 4\} = uX = X$. Then $\{1, 2, 3\}$ is ∂ -closed set but it is not closed.

Example 2.7. Let $X = \{1, 2\}$ and define a closure operator u on X by $u\emptyset = \emptyset$ and $u\{1\} = u\{2\} = uX = X$. Then $\{1\}$ is g-closed but it is not ∂ -closed.

Proposition 2.8. Let (X, u) be a closure space and let $A, B \subseteq X$. If A is closed and B is g-closed, then $A \cap B$ is g-closed.

Proof. Let G be an open subset of (X,u) such that $A \cap B \subseteq G$. Then $B \subseteq (X-A) \cup G$. Since $(X-A) \cup G$ is open, $uB \subseteq (X-A) \cup G$. Consequently, $A \cap uB \subseteq G$. Since A is closed, $u(A \cap B) \subseteq uA \cap uB = A \cap uB \subseteq G$. Hence, $A \cap B$ is g-closed.

Proposition 2.9. [2] Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then F is a ∂ -closed subset of (X_{β}, u_{β}) if and only if $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a

 ∂ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$.

Proposition 2.10. [2] Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then G is a ∂ -open subset of (X_{β}, u_{β}) if and only if $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a

 ∂ -open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$.

Proposition 2.11. [2] Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces. For each $\beta \in I$, let $\pi_{\beta} : \prod_{\alpha \in I} X_{\alpha} \to X_{\beta}$ be the projection map. Then

- (i) If F is a ∂ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$, then $\pi_{\beta}(F)$ is a ∂ -closed subset of (X_{β}, u_{β}) .
- (ii) If F is a ∂ -closed subset of (X_{β}, u_{β}) , then $\pi_{\beta}^{-1}(F)$ is a ∂ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$.

Definition 2.12. Let (X, u) and (Y, v) be closure spaces. A map $f: (X, u) \to (Y, v)$ is called ∂ -irresolute, if $f^{-1}(F)$ is a ∂ -closed subset of (X, u) for every ∂ -closed subset F of (Y, v).

Clearly, a map $f:(X,u)\to (Y,v)$ is ∂ -irresolute if and only if $f^{-1}(G)$ is a ∂ -open subset of (X,u) for every ∂ -open subset G of (Y,v).

Definition 2.13. [3] A biclosure space is a triple (X, u_1, u_2) where X is a set and u_1, u_2 are two closure operators on X.

Definition 2.14. [3] A subset A of a biclosure space (X, u_1, u_2) is called closed if $u_1u_2A = A$. The complement of closed set is called open.

Clearly, A is a closed subset of a biclosure space (X, u_1, u_2) if and only if A is both a closed subset of (X, u_1) and (X, u_2) .

Let A be a closed subset of a biclosure space (X, u_1, u_2) . The following conditions are equivalent:

- (i) $u_2u_1A = A$,
- (ii) $u_1 A = A$, $u_2 A = A$.

Definition 2.15. [3] Let (X, u_1, u_2) be a biclosure space. A biclosure space (Y, v_1, v_2) is called a subspace of (X, u_1, u_2) if $Y \subseteq X$ and $v_i A = u_i A \cap Y$ for each $i \in \{1, 2\}$ and each subset $A \subseteq Y$.

Definition 2.16. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $i \in \{1, 2\}$. A map $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ is called i- ∂ -irresolute if the map $f: (X, u_i) \to (Y, v_i)$ is ∂ -irresolute. A map f is called ∂ -irresolute if f is i- ∂ -irresolute for each $i \in \{1, 2\}$.

3. ∂ -Hausdorff biclosure spaces

In this section, we introduce the concept of ∂ -Hausdorff biclosuure spaces and study some of their properties.

Definition 3.1. A biclosure space (X, u_1, u_2) is said to be ∂ -Hausdorff biclosure space if, whenever x and y are distinct points of X there exists ∂ -open subset U of (X, u_1) and ∂ -open subset V of (X, u_2) such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Example 3.2. Let $X = \{a, b\}$ and define a closure operator u_1 on X by $u_1\emptyset = \emptyset$, $u_1\{a\} = u_1\{b\} = u_1X = X$. Define a closure operator u_2 on X by $u_2\emptyset = \emptyset$, $u_2\{a\} = u_2\{b\} = u_2X = X$. Then (X, u_1, u_2) is a ∂ -Hausdorff biclosure space.

Proposition 3.3. Let (X, u_1, u_2) be a biclosure space and let $A, B \subseteq X$. If A is a closed subset of (X, u_1, u_2) and B is both a ∂ -closed subset of (X, u_1) and (X, u_2) , then $A \cap B$ is both a ∂ -closed subset of (Y, v_1) and (Y, v_2) .

Proof. Let G be a g-open subset of (X, u_1) such that $A \cap B \subseteq G$. Then $B \subseteq (X - A) \cup G$. Since $(X - A) \cup G$ is a g-open subset of (X, u_1) , $u_1B \subseteq (X - A) \cap G$. Consequently, $A \cap u_1B \subseteq G$. Since A is a closed subset of (X, u_1) , $u_1(A \cap B) \subseteq u_1A \cap u_1B = A \cap u_1B \subseteq G$. Hence, $A \cap B$ is a ∂ -closed subset of (X, u_1) . Similarly, if A is a closed subset of (X, u_1, u_2) and B is a ∂ -closed subset of (X, u_2) , then $A \cap B$ is a ∂ -closed subset of (Y, v_2) .

Lemma 3.4. Let (X, u_1, u_2) be a biclosure space and let (Y, v_1, v_2) be a closed subspace of (X, u_1, u_2) . If G is both a ∂ -open subset of (X, u_1) and (X, u_2) , then $G \cap Y$ is both a ∂ -open subset of (Y, v_1) and (Y, v_2) .

Proof. Let G be a ∂ -open subset of (X, u_1) . Then X - G is a ∂ -closed subset of (X, u_1) . Since Y is a closed subset of (X, u_1) , $(X - G) \cap Y$ is a ∂ -closed subset of (X, u_1) . But $(X - G) \cap Y = Y - (G \cap Y)$. Therefore, $Y - G \cap Y$ is a ∂ -closed subset of (X, u_1) . Hence, $G \cap Y$ is a ∂ -open subset of (X, u_1) . Similarly, if G is a ∂ -open subset of (X, u_2) , then $G \cap Y$ is a ∂ -open subset of (Y, u_2) .

Proposition 3.5. Let (X, u_1, u_2) be a biclosure space and let (Y, v_1, v_2) be a closed subspace of (X, u_1, u_2) . If (X, u_1, u_2) is a ∂ -Hausdorff biclosure space, then (Y, v_1, v_2) is a ∂ -Hausdorff biclosure space.

Proof. Let y and y' be any two distinct points of Y. Then y and y' are distinct points of X. Since (X, u_1, u_2) is a ∂ -Haurdorff biclosure space, there exists a disjoint ∂ -open subset U of (X, u_1) and ∂ -open subset V of (X, u_2) containing y and y', respectively. Consequently, $y \in U \cap Y$, $y' \in V \cap Y$ and $(U \cap Y) \cap (V \cap Y) = \emptyset$. By Lemma 3.4, $U \cap Y$ is ∂ -open subset of (Y, v_1) and $V \cap Y$ is ∂ -open subset of (Y, v_2) . Hence, (Y, v_1, v_2) is a ∂ -Hausdorff biclosure space.

Proposition 3.6. Let $\{(X_{\alpha}, u_{\alpha}^1, u_{\alpha}^2) : \alpha \in I\}$ be a family of biclosure spaces. Then $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^1, u_{\alpha}^2)$ is a ∂ -Hausdorff biclosure space if and only if $(X_{\alpha}, u_{\alpha}^1, u_{\alpha}^2)$ is a ∂ -Hausdorff biclosure space for each $\alpha \in I$.

Proof. Suppose that $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a ∂ -Hausdorff biclosure space. Let $\beta \in I$ and x_{β}, y_{β} be any two distinct points of X_{β} . Then $(x_{\alpha})_{\alpha \in I}$ and $(y_{\alpha})_{\alpha \in I}$ are distinct points of $\prod_{\alpha \in I} X_{\alpha}$. Since $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a ∂ -Hausdorff biclosure space. There exists

 ∂ -open subset U of (X_{β}, u_{β}^1) and ∂ -open subset V of (X_{β}, u_{β}^2) such that $x_{\beta} \in U$, $y_{\beta} \in V$ and $U \cap V = \emptyset$. Therefore, $(X_{\beta}, u_{\beta}^1, u_{\beta}^2)$ is a ∂ -Hausdorff biclosure space.

Conversely, suppose that $(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a ∂ -Hausdorff biclosure space for each $\alpha \in I$. Let $(x_{\alpha})_{\alpha \in I}$ and $(y_{\alpha})_{\alpha \in I}$ be any two distinct points of $\prod X_{\alpha}$. Then x_{β} and y_{β} are distinct points of X_{β} . Since $(X_{\beta}, u_{\beta}^{1}, u_{\beta}^{2})$ is a ∂ -Hausdorff biclosure space, there exists a disjoint ∂ -open subset U of (X_{β}, u_{β}^1) and ∂ -open subset V of (X_{β}, u_{β}^2) such that $x_{\beta} \in U$ and $y_{\beta} \in V$. Consequently, $U \times \prod_{\alpha} X_{\alpha}$ is a ∂ -open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^{1},)$ and $V \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a ∂ -open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^{2})$ such that $(x_{\alpha})_{\alpha \in I} \in U \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}, (y_{\alpha})_{\alpha \in I} \in V \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \text{ and } (U \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}) \cap (V \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}) = \emptyset.$ Hence, $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$ is a ∂ -Hausdorff biclosure space.

Proposition 3.7. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces. Let f: $(X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be injective and ∂ -irresolute. If (Y, v_1, v_2) is a ∂ -Hausdorff biclosure space, then (X, u_1, u_2) is a ∂ -Hausdorff biclosure space.

Proof. Let x and y be any two distinct points of X. Then f(x) and f(y) are distinct points of Y. Since (Y, v_1, v_2) is a ∂ -Hausdorff biclosure space, there exists a disjoint ∂ -open subset U of (Y, v_1) and ∂ -open subset V of (Y, v_2) containing f(x)and f(y), respectively. Since f is ∂ -irresolute and $U \cap V = \emptyset$, $f^{-1}(U)$ is a ∂ -open subset of (X, u_1) , $f^{-1}(V)$ is a ∂ -open subset of (X, u_2) , $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ and $x \in f^{-1}(U), y \in f^{-1}(V)$. Therefore, (X, u_1, u_2) is a ∂ -Hausdorff biclosure space.

References

- [1] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 12 (1991), 5-13.
- [2] C. Boonpok and J. Khampakdee, Between closed sets and generalized closed sets in closure spaces, Acta Math. Univ. Ostraviensis, 16 (2008), 3-14.
- [3] C. Boonpok, Bicontinuous maps in biclosure spaces, Int. J. Contemp. Math. Sciences, 5(2) (2010), 51-59.
- [4] E. Čech, Topological Spaces, Topological Papers of Eduard Čech, Academia, Prague 1968, 436-472.
- [5] J. Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, **XVII** (1981), 81-86.

- [6] J. C. Kelly, *Bitopological spaces*, Pro. London Math. Soc. $\mathbf{3}(13)$ (1969), 71-79.
- [7] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (1970), 89-96.
- [8] L. Skula, Systeme von stetigen abbildungen, Czech. Math. J., $\mathbf{17}(92)$ (1967), 45-52.
- [9] J. Šlapal, Closure operations for digital topology, Theoret. Comput. Sci., **305** (2003), 457-471.

Chawalit Boonpok
Department of Mathematics
Faculty of Science
Mahasarakham University
Mahasarakham, 44150
THAILAND
email: chawalit.b@msu.ac.th