Acta Universitatis Apulensis

No. 24/2010
ISSN: 1582-5329

pp. 239-245

ON THE LOCALIZATION OF FACTORED FOURIER SERIES

HÜSEYİN BOR

ABSTRACT. In this paper, a general theorem dealing with the local property of $|\bar{N}, p_n, \theta_n|_k$ summability of factored Fourier series has been proved, which generalizes some known results.

2010 AMS Subject Classification: 40G99, 42A24, 42B08. Key Words: Absolute summability, infinite series, local property, Fourier series.

1.Introduction

Let $\sum a_n$ be a given infinite series with partial sums (s_n) . Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^n p_v \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, i \ge 1).$$
 (1)

The sequence-to-sequence transformation

$$\sigma_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v \tag{2}$$

defines the sequence (σ_n) of the Riesz mean or simply the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [6]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k, k \geq 1$, if (see [2])

$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} \mid \Delta \sigma_{n-1} \mid^k < \infty, \tag{3}$$

where

$$\Delta \sigma_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v, \quad n \ge 1.$$
 (4)

In the special case $p_n=1$ for all values of n, $|\bar{N}, p_n|_k$ summability is the same as $|C, 1|_k$ summability. Also, if we take k=1 and $p_n=1/(n+1)$, then summability $|\bar{N}, p_n|_k$ is equivalent to the summability $|R, \log n, 1|$. Let (θ_n) be any sequence of positive constants. The series $\sum a_n$ is said to be summable $|\bar{N}, p_n, \theta_n|_k, k \geq 1$, if (see [9])

$$\sum_{n=1}^{\infty} \theta_n^{k-1} \mid \Delta \sigma_{n-1} \mid^k < \infty. \tag{5}$$

If we take $\theta_n = \frac{P_n}{p_n}$, then $|\bar{N}, p_n, \theta_n|_k$ summability reduces to $|\bar{N}, p_n|_k$ summability. Also, if we take $\theta_n = n$ and $p_n = 1$ for all values of n, then we get $|C, 1|_k$ summability.

Furthermore, if we take $\theta_n = n$, then $|\bar{N}, p_n, \theta_n|_k$ summability reduces to $|R, p_n|_k$ (see [4]) summability. A sequence (λ_n) is said to be convex if $\Delta^2 \lambda_n \geq 0$ for every positive integer n, where $\Delta^2 \lambda_n = \Delta(\Delta \lambda_n)$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$. Let f(t) be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of f(t) is zero, so that

$$\int_{-\pi}^{\pi} f(t)dt = 0 \tag{6}$$

and

$$f(t) \sim \sum_{n=1}^{\infty} (b_n \cos nt + c_n \sin nt) = \sum_{n=1}^{\infty} A_n(t),$$
 (7)

where (b_n) and (c_n) denote the Fourier coefficients. It is well known that the convergence of the Fourier series at t = x is a local property of the generating function f(t) (i. e., it depends only on the behaviour of f in a arbitrarily small neighbourhood of x), and hence the summability of the Fourier series at t = x by any regular linear summability method is also a local property of the generating function f(t) (see [10]).

2. Known result

Mohanty [8] has demonstrated that the summability $|R, \log n, 1|$ of

$$\sum A_n(t)/\log(n+1),\tag{8}$$

at t = x, is a local property of the generating function of $\sum A_n(t)$. Later on Matsumoto [7] improved this result by replacing the series (8) by

$$\sum A_n(t)/\log\log(n+1)^{1+\epsilon}, \epsilon > 0.$$
(9)

Generalizing the above result Bhatt [1] proved the following theorem.

Theorem A. If (λ_n) is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent, then the summability |R|, $\log n$, 1 | of the series $\sum A_n(t)\lambda_n \log n$ at a point can be ensured by a local property.

Bor [4] has proved Theorem A in a more general form which includes of the above results as special cases. Also it should be noted that the conditions on the sequence (λ_n) in that theorem, are somewhat more general than in Theorem A. His theorem is as follows.

Theorem B. Let $k \geq 1$. If (λ_n) is a non-negative and non-increasing sequence such that $\sum p_n \lambda_n$ is convergent, then the summability $|\bar{N}, p_n|_k$ of the series $\sum A_n(t)\lambda_n P_n$ at a point is a local property of the generating function f(t).

3. The main result

The aim of the present paper is to generalize Theorem B for $|\bar{N}, p_n, \theta_n|_k$ summability under suitable conditions. We shall prove the following theorem.

Theorem. Let $k \geq 1$. If (λ_n) is a non-negative and non-increasing sequence such that $\sum p_n \lambda_n$ is convergent and (θ_n) is any sequence of positive constants such that

$$\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} P_v \Delta \lambda_v = O(1) \quad as \quad m \to \infty, \tag{10}$$

$$\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} p_v \lambda_v = O(1) \quad as \quad m \to \infty, \tag{11}$$

$$\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} p_{v+1} \lambda_{v+1} = O(1) \quad as \quad m \to \infty, \tag{12}$$

$$\sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n} \right)^{k-1} \frac{p_n}{P_n P_{n-1}} = O\left\{ \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \frac{1}{P_v} \right\}, \tag{13}$$

then the summability $|\bar{N}, p_n, \theta_n|_k$ of the series $\sum A_n(t)\lambda_n P_n$ at a point is a local property of the generating function f(t).

It should be noted that if we take $\theta_n = \frac{P_n}{p_n}$, then we get Theorem B. In this case conditions (10)-(12) are obvious and condition (13) reduces to

$$\sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}} = O\left\{\frac{1}{P_v}\right\},\tag{14}$$

which always holds .Also, if we take k = 1 and $p_n = 1/(n+1)$, then we obtain Theorem A.

We need the following lemmas for the proof of our theorem.

Lemma 1([5]). If (λ_n) is a non-negative and non-increasing sequence such that $\sum p_n \lambda_n$ is convergent, then $P_n \lambda_n = O(1)$ as $n \to \infty$ and $\sum P_n \Delta \lambda_n < \infty$.

Lemma 2. Let $(s_n)=a_1+a_2+...+a_n=O(1)$. If (λ_n) is a non-negative and non-increasing sequence such that $\sum p_n\lambda_n$ is convergent and the conditions (10)-(13) are satisfied, then the series $\sum a_n\lambda_nP_n$ is summable $|\bar{N},p_n,\theta_n|_k,k\geq 1$.

Proof. Let (T_n) denotes the (\bar{N}, p_n) mean of the series $\sum a_n \lambda_n P_n$. Then, by definition, we have

$$T_n = \frac{1}{P_n} \sum_{v=0}^n p_v \sum_{r=0}^v a_r \lambda_r P_r = \frac{1}{P_n} \sum_{v=0}^n (P_n - P_{v-1}) a_v \lambda_v P_v.$$

Then, for $n \geq 1$, we have that

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} P_v a_v \lambda_v.$$

By Abel's transformation, we have

$$T_{n} - T_{n-1} = \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} P_{v}P_{v}s_{v}\Delta\lambda_{v} - \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} P_{v}s_{v}p_{v}\lambda_{v}$$

$$- \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} P_{v}p_{v+1}s_{v}\lambda_{v+1} + s_{n}p_{n}\lambda_{n}$$

$$= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}, \quad say.$$

By Minkowski's inequality for k > 1, to complete the proof of the Lemma 2, it is sufficient to show that

$$\sum_{n=1}^{\infty} \theta_n^{k-1} \mid T_{n,r} \mid^k < \infty, \quad for \quad r = 1, 2, 3, 4.$$
 (15)

Now, applying Hölder's inequality with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$ and k > 1, we get that

$$\sum_{n=2}^{m+1} \theta_n^{k-1} | T_{n,1} |^k \leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}} \left\{ \sum_{v=1}^{n-1} | s_v |^k P_v P_v \Delta \lambda_v \right\}$$

$$\times \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_v P_v \Delta \lambda_v \right\}^{k-1}$$

$$= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_v P_v \Delta \lambda_v$$

$$= O(1) \sum_{v=1}^{m} P_v P_v \Delta \lambda_v \sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n} \right)^{k-1} \frac{p_n}{P_n P_{n-1}}$$

$$= O(1) \sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} P_v \Delta \lambda_v = O(1) \quad as \quad m \to \infty,$$

by virtue of the hypotheses of the Lemma 2 and Lemma 1. Again

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} \mid T_{n,2} \mid^k &\leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}} \left\{ \sum_{v=1}^{n-1} \mid s_v \mid^k (P_v \lambda_v)^k p_v \right\} \times \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} (P_v \lambda_v)^k p_v \\ &= O(1) \sum_{v=1}^{m} (P_v \lambda_v)^k p_v \sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n} \right)^{k-1} \frac{p_n}{P_n P_{n-1}} \\ &= O(1) \sum_{v=1}^{m} (P_v \lambda_v)^k \frac{p_v}{P_v} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} (P_v \lambda_v)^{k-1} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} p_v \lambda_v \\ &= O(1) \sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} p_v \lambda_v = O(1) \quad as \quad m \to \infty, \end{split}$$

in view of the hypotheses of the Lemma 2 and Lemma 1. Using the fact that $P_v < P_{v+1}$, similarly we have that

$$\sum_{n=2}^{m+1} \theta_n^{k-1} \mid T_{n,3} \mid^k = O(1) \sum_{v=1}^m \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} p_{v+1} \lambda_{v+1} = O(1) \quad as \quad m \to \infty,$$

Finally, we have that

$$\sum_{n=1}^{m} \theta_{n}^{k-1} | T_{n,4} |^{k} = \sum_{n=1}^{m} \theta_{n}^{k-1} | s_{n} |^{k} p_{n}^{k} \lambda_{n}^{k}$$

$$= O(1) \sum_{n=1}^{m} \theta_{n}^{k-1} p_{n}^{k-1} p_{n} \lambda_{n}^{k-1} \lambda_{n} \frac{P_{n}^{k-1}}{P_{n}^{k-1}}$$

$$= O(1) \sum_{n=1}^{m} \left(\frac{\theta_{n} p_{n}}{P_{n}} \right)^{k-1} (P_{n} \lambda_{n})^{k-1} p_{n} \lambda_{n}$$

$$= O(1) \sum_{n=1}^{m} \left(\frac{\theta_{n} p_{n}}{P_{n}} \right)^{k-1} p_{n} \lambda_{n} = O(1) \quad as \quad m \to \infty,$$

by virtue of the hypotheses of the Lemma 2 and Lemma 1. Therefore, we get that

$$\sum_{n=1}^{m} \theta_n^{k-1} \mid T_{n,r} \mid^k = O(1) \quad as \quad m \to \infty, for \quad r = 1, 2, 3, 4.$$

This completes the proof of the Lemma 2.

4. Proof of the Theorem

Since the behaviour of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behaviour of the function in the immediate neighbourhood of this point only , hence the truth of the Theorem is a necessarry consequence of Lemma 2. If we take $\theta_n = n$ and $p_n = 1$ for all values of n, then we have a new local property result dealing with $\mid C, 1 \mid_k$ summability. Also, if we take $\theta_n = n$, then we obtain another new local property result for $\mid R, p_n \mid_k$ summability.

Acknowledgement. The author wishes to express his sincerest thanks Professor L. Leindler (Szeged University, Hungary) for his invaluable suggestions for the improvement of this paper.

References

[1] S. N. Bhatt, An aspect of local property of |R, logn, 1| summability of the factored Fourier series, Proc. Nat. Inst. Sci. India, 26 (1960), 69-73.

- [2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos Soc., 97 (1985),147-149.
- [3] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 1009-1012.
- [4] H. Bor, Localization of factored Fourier series, J.Inequal. Pure Appl. Math., 6 (2005), Article 40, (electronic).
- [5] H. Bor, A note on local property of factored Fourier series, Nonlinear Anal., 64 (2006), 513-517.
- [6] G. H. Hardy, Divergent series, Oxford Univ. Press, Oxford, (1949).
- [7] K. Matsumoto, Local property of the summability $\mid R, logn, 1 \mid$, Tôhoku Math. J. (2), 8 (1956), 114-124.
- [8] R. Mohanty, On the summability $\mid R, logw, 1 \mid$ of Fourier series, J. London Math. Soc., 25 (1950), 67-72.
- [9] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115 (1992), 313-317.
- [10] E.C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, (1961).

Hüseyin BOR
Department of Mathematics
Erciyes University
38039 Kayseri, Turkey
E-mail: bor@erciyes.edu.tr; hbor33@gmail.com