Acta Universitatis Apulensis

No. 24/2010
ISSN: 1582-5329

pp. 181-187

### A NEW CLASS OF MEROMORPHIC FUNCTIONS

# SAQIB HUSSAIN

ABSTRACT. In this paper, making use of a linear operator we introduce and study a new class of meromorphic functions. We derive some inclusion relations and a radius problem. This class contain many known classes of meromorphic functions as special cases.

2000 Mathematics Subject Classification: 30C45, 30C50.

### 1. Introduction

Let M denotes the class of functions of the form

$$f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n \ z^n, \tag{1.1}$$

which are analytic in the punctured open unit disc  $D = \{z : 0 < |z| < 1\}$ . Further let  $P_k(\alpha)$  be the class of functions  $p(z), z \in E$ , analytic in  $E = D \cup \{0\}$  satisfying p(0) = 1 and

$$\int_{0}^{2\pi} \left| \frac{\operatorname{Re} p(z) - \alpha}{1 - \alpha} \right| d\theta \le k\pi, \tag{1.2}$$

where  $z=re^{i\theta}, k\geq 2,\ 0\leq \alpha<1$ . This class was introduced by Padmanbhan and Paravatham [5]. For  $\alpha=0$  we obtain the class  $P_k$  defined by Pinchuk [6] and  $P_2(\alpha)=P(\alpha)$  is the class with positive real part greater than  $\alpha$ . Also  $p\in P_k(\alpha)$ , if and only if

$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right) p_2(z), \tag{1.3}$$

where  $p_1, p_2 \in P(\alpha), z \in E$ . The class M is closed under then the convolution or Hadamard product denoted and defined by

$$(f * g)(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n \ b_n \ z^n, \tag{1.4}$$

where

$$f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n \ z^n, \ g(z) = \frac{1}{z} + \sum_{n=0}^{\infty} b_n \ z^n.$$

The incomplete Beta function is defined by

$$\phi(a,c;z) = \frac{1}{z} + \sum_{n=0}^{\infty} \frac{(a)_{n+1}}{(c)_{n+1}} z^n, \quad a,c \in R, c \neq 0, -1, -2, ..., z \in D$$
 (1.5)

where  $(a)_n$  is the Pochhammer symbol. Using  $\phi(a, c; z)$  Liu and Srivastava [3] defined an operator  $\mathcal{L}(a, c) : M \to M$ , as

$$\pounds(a,c)f(z) = \phi(a,c;z) * f(z). \tag{1.6}$$

This operator is closely related to the Carlson-Shaffer operator studied in [1]. Analogous to  $\mathcal{L}(a,c)$ , in [2] Cho and Noor defined  $I_{\mu}(a,c): M \to M$  as

$$I_{\mu}(a,c)f(z) = (\phi(a,c;z))^{-1} * f(z), \quad (\mu > 0, a > 0, \ c \neq -1, -2, -3, ..., \ z \in D).$$
(1.7)

We note that

$$I_2(2,1)f(z) = f(z)$$
, and  $I_2(1,1)f(z) = zf'(z) + 2f(z)$ 

Using (1.7), it can be easily verified that

$$z(I_{\mu}(a+1,c)f(z))' = aI_{\mu}(a,c)f(z) - (a+1)I_{\mu}(a+1,c)f(z)$$
(1.8)

and

$$z(I_{\mu}(a,c)f(z)) = \mu I_{\mu+1}(a,c)f(z) - (\mu+1)I_{\mu}(a,c)f(z). \tag{1.9}$$

Furthermore for  $f \in M$ , Re b > 0 the Generalized Bernadi Operator is defined as

$$J_b f(z) = \frac{b}{z^{b+1}} \int_0^z t^b f(t) dt.$$
 (1.10)

Using (1.10) it can easily be verified that

$$z(I_{\mu}(a,c)J_{b}f(z))' = bI_{\mu}(a,c)f(z) - (b+1)I_{\mu}(a,c)J_{b}f(z). \tag{1.11}$$

Now using the operator  $I_{\mu}(a,c)$ , we define the following class of meromorphic functions.

**Definition 1.1** Let  $f \in M$ , then  $f(z) \in Q_k^{\mu}(a, c, \lambda, \alpha)$ , if and only if

$$-\frac{z\left(I_{\mu}(a,c)f(z)\right)'+\lambda z^{2}\left(I_{\mu}(a,c)f(z)\right)''}{(1-\lambda)I_{\mu}(a,c)f(z)+\lambda z\left(I_{\mu}(a,c)f(z)\right)'}\in P_{k}(\alpha),$$

where k > 2,  $0 < \lambda < 1$ ,  $0 < \alpha < 1$ ,  $\mu > 0$ ,  $\alpha > 0$ ,  $c \neq -1, -2, -3, ...$ ,  $z \in D$ .

## Special Cases:

- (i) For  $\lambda = 0$  and  $\lambda = 1$  this class was already discussed by Noor in [2].
- For  $\lambda = 0$ ,  $\mu = 2$ , a = 2, c = 1,  $k = 2 \frac{zf(z)}{f(z)} \in P(\alpha)$ . For  $\lambda = 1$ ,  $\mu = 2$ , a = 2, c = 1, k = 2(ii)
- (iii)

$$-\frac{[zf'(z)]'}{f'(z)} \in P(\alpha).$$

#### 2. Preliminary Results

**Lemma 2.1** [4]. Let  $u = u_1 + iu_2$  and  $v = v_1 + iv_2$  and let  $\varphi(u, v)$  be a complex valued function satisfying the conditions:

- i)  $\varphi(u,v)$  is continuous in  $D\subset C^2$ ,
- ii)  $(1,0) \in D$  and  $\text{Re } \varphi(1,0) > 0$ ,
- iii) Re  $\varphi(iu_2, v_1) \leq 0$  whenever  $(iu_2, v_1) \in D$  and  $v_1 \leq -\frac{1}{2}(1 + u_2^2)$ .

If h(z) is a function analytic in  $D \cup \{0\}$  such that  $(h(z), zh'(z)) \in D$  and  $\operatorname{Re} \varphi(h(z), zh'(z)) > 0 \text{ for } z \in D \cup \{0\}, \text{ then } \operatorname{Re} h(z) > 0 \text{ in } D \cup \{0\}.$ 

## 3.Main Results

**Theorem 3.1.** For  $k \geq 2$ ,  $0 \leq \lambda \leq 1$ ,  $0 \leq \alpha < 1$ ,  $\mu > 0$ , a > 0,  $c \neq$  $-1, -2, -3, ..., z \in D.$ 

$$Q_k^{\mu+1}(a,c,\lambda,\alpha) \subset Q_k^{\mu}(a,c,\lambda,\beta) \subset Q_k^{\mu}(a+1,c,\lambda,\gamma).$$

*Proof.* First we prove that

$$Q_k^{\mu+1}(a,c,\lambda,\alpha)\subset Q_k^{\mu}(a,c,\lambda,\beta).$$

Let  $f(z) \in Q_k^{\mu+1}(a,c,\lambda,\alpha)$  and set

$$-\frac{z(I_{\mu}(a,c)f(z))' + \lambda z^{2}(I_{\mu}(a,c)f(z))''}{(1-\lambda)I_{\mu}(a,c)f(z) + \lambda z(I_{\mu}(a,c)f(z))'} = H(z).$$
(3.1)

From (1.9) and (3.1), we have

$$\frac{\mu[\lambda z (I_{\mu+1}(a,c)f(z))' + (1-\lambda)I_{\mu+1}(a,c)f(z)]}{(1-\lambda)I_{\mu}(a,c)f(z) + \lambda z (I_{\mu}(a,c)f(z))'} = -H(z) + (\mu+1). \tag{3.2}$$

After multiplying (3.2) by z and then by logarithmic differentiation, we obtain

$$-\frac{z\left(I_{\mu+1}(a,c)f(z)\right)'+\lambda z^2\left(I_{\mu+1}(a,c)f(z)\right)''}{(1-\lambda)I_{\mu+1}(a,c)f(z)+\lambda z\left(I_{\mu+1}(a,c)f(z)\right)'}=H(z)+\frac{zH(z)}{-H(z)+(\mu+1)}\in P_k(\alpha).$$

Let

$$\varphi_{\mu}(z) = \frac{1}{\mu + 1} \left[ \frac{1}{z} + \sum_{k=0}^{\infty} z^{k} \right] + \frac{\mu}{\mu + 1} \left[ \frac{1}{z} + \sum_{k=0}^{\infty} k \ z^{k} \right],$$

then

$$\begin{split} H(z) * z \varphi_{\mu}(z) &= H(z) + \frac{z H'(z)}{-H(z) + (\mu + 1)} \\ &= \left(\frac{k}{4} + \frac{1}{2}\right) \left(h_1(z) + z \varphi_{\mu}(z)\right) - \left(\frac{k}{4} - \frac{1}{2}\right) \left(h_2(z) + z \varphi_{\mu}(z)\right) \\ &= \left(\frac{k}{4} + \frac{1}{2}\right) \left\{h_1(z) + \frac{z h_1'(z)}{-h_1(z) + (\mu + 1)}\right\} - \\ &- \left(\frac{k}{4} - \frac{1}{2}\right) \left\{h_1(z) + \frac{z h_2'(z)}{-h_2(z) + (\mu + 1)}\right\}. \end{split}$$

As  $f(z) \in Q_k^{\mu+1}(a, c, \lambda, \alpha)$ , so

$$h_i(z) + \frac{zh_i(z)}{-h_i(z) + (\mu + 1)} \in P(\alpha)$$
  $i = 1, 2.$ 

Let  $h_i(z) = (1 - \beta)p_i(z) + \beta$ , then

$$\left[ (1 - \beta)p_i(z) + \frac{(1 - \beta)zp_i(z)}{-(1 - \beta)p_i(z) + (\mu - \beta + 1)} + (\beta - \alpha) \right] \in P.$$

We want to show that  $p_i \in P$ , for i = 1, 2. For this we formulate a functional  $\varphi(u, v)$  by taking  $u = p_i(z)$  and  $v = zp_i(z)$  as follows:

$$\varphi(u,v) = (1 - \beta)u + \frac{(1 - \beta)v}{-(1 - \beta)u + (\mu - \beta + 1)} + (\beta - \alpha).$$

The first two conditions of Lemma 2.1 are clearly satisfied. For the third condition we proceed as follows:

Re 
$$\varphi(iu_2, v_1) = (\beta - \alpha) + \frac{(1 - \beta)v_1}{(1 - \beta)^2 u_2^2 + (\mu - \beta + 1)^2}.$$

When  $v_1 \leq -\frac{1}{2}(1+u_2^2)$ , then

$$\operatorname{Re} \varphi(iu_2, v_1) \leq (\beta - \alpha) - \frac{(1 - \beta)(\mu - \beta + 1)(1 + u_2^2)}{2[(1 - \beta)^2 u_2^2 + (\mu - \beta + 1)^2]}$$
$$= \frac{A + Bu_2^2}{2C},$$

where

$$A = (\mu - \beta + 1) \{2(\beta - \alpha)(\mu - \beta + 1) - (1 - \beta)\},$$
  

$$B = (1 - \beta) \{2(\beta - \alpha)(1 - \beta) - (\mu - \beta + 1)\},$$
  

$$C = (1 - \beta)^2 u_2^2 + (\mu - \beta + 1)^2.$$

We note that  $\operatorname{Re} \varphi(iu_2, v_1) \leq 0$  if and only if  $A \leq 0$ , and  $B \leq 0$ . From  $A \leq 0$ , we have

$$\beta = \frac{1}{4} \left[ (3 + 2\mu + 2\alpha) - \sqrt{(3 + 2\mu + 2\alpha)^2 - 8(2\alpha + 2\alpha\mu + 1)} \right],$$

and  $B \leq 0$  gives us  $0 \leq \beta < 1$ . Hence by Lemma 2.1,  $p_i \in P$ , for i = 1, 2 and consequently,  $f(z) \in Q_k^{\mu}(a, c, \lambda, \beta)$ . Similarly, we can prove the other inclusion.

**Theorem 3.2.** If  $f(z) \in Q_k^{\mu+1}(a, c, \lambda, \alpha)$  and  $J_b$  is given by (1.11) then  $J_b f(z) \in Q_k^{\mu+1}(a, c, \lambda, \beta)$ .

*Proof.* Let  $f(z) \in Q_k^{\mu+1}(a, c, \lambda, \alpha)$  and set

$$-\frac{z(I_{\mu}(a,c)J_{b}f(z))' + \lambda z^{2}(I_{\mu}(a,c)J_{b}f(z))''}{(1-\lambda)I_{\mu}(a,c)J_{b}f(z) + \lambda z(I_{\mu}(a,c)J_{b}f(z))'} = H(z).$$
(3.3)

Using (1.11), (3.3) and after some simplifications, we obtain

$$-\frac{z(I_{\mu}(a,c)f(z))' + \lambda z^{2}(I_{\mu}(a,c)f(z))''}{(1-\lambda)I_{\mu}(a,c)f(z) + \lambda z(I_{\mu}(a,c)f(z))'} = H(z) + \frac{zH'(z)}{-H(z) + (b+1)}.$$
 (3.4)

Now working as in Theorem 3.1 we obtain the desired result.

**Theorem 3.3.** If  $f(z) \in Q_k^{\mu}(a,c,\lambda,\alpha)$  then  $f(z) \in Q_k^{\mu+1}(a,c,\lambda,\alpha)$ , for  $|z| < r_0$ , where

$$r_0 = \frac{1}{4} \{ \sqrt{4 + \mu(\mu + 2)} - 2 \}. \tag{3.5}$$

*Proof.* Since  $f(z) \in Q_k^{\mu}(a, c, \lambda, \alpha)$ , so working in the same way as in Theorem 3.1, we have

$$-\frac{z(I_{\mu}(a,c)f(z))' + \lambda z^{2}(I_{\mu}(a,c)f(z))''}{(1-\lambda)I_{\mu}(a,c)f(z) + \lambda z(I_{\mu}(a,c)f(z))'} = H(z)$$
(3.6)

$$= \left(\frac{k}{4} + \frac{1}{2}\right)h_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)h_2(z),$$

where  $h_i \in P(\alpha)$  for i = 1, 2.

From (1.9), (3.6) and after some simplification, we have

$$-\frac{z \left(I_{\mu+1}(a,c) f(z)\right)' + \lambda z^2 \left(I_{\mu+1}(a,c) f(z)\right)''}{(1-\lambda)I_{\mu+1}(a,c) f(z) + \lambda z \left(I_{\mu+1}(a,c) f(z)\right)'}$$

$$= \left(\frac{k}{4} + \frac{1}{2}\right) \left\{h_1(z) + \frac{zh_1(z)}{-h_1(z) + (\mu + 1)}\right\}$$

$$-\left(\frac{k}{4} - \frac{1}{2}\right) \left\{h_2(z) + \frac{zh_2(z)}{-h_2(z) + (\mu + 1)}\right\}.$$
(3.7)

Let  $h_i(z) = (1 - \alpha)p_i(z) + \alpha$ . Then (3.7) becomes

$$\frac{1}{1-\alpha} \left[ -\frac{z \left( I_{\mu+1}(a,c)f(z) \right)' + \lambda z^2 \left( I_{\mu+1}(a,c)f(z) \right)''}{(1-\lambda)I_{\mu+1}(a,c)f(z) + \lambda z \left( I_{\mu+1}(a,c)f(z) \right)'} - \alpha \right]$$

$$= \left(\frac{k}{4} + \frac{1}{2}\right) \left\{ p_1(z) + \frac{zp_1(z)}{-h_1(z) + (\mu + 1)} \right\} - \left(\frac{k}{4} - \frac{1}{2}\right) \left\{ p_2(z) + \frac{zp_2(z)}{-p_2(z) + (\mu + 1)} \right\}. \tag{3.8}$$

Now consider

$$\operatorname{Re}\left[h_{i}(z) + \frac{zh_{i}(z)}{-h_{i}(z) + (\mu + 1)}\right] \ge \operatorname{Re}h_{i}(z) - \left|\frac{zh_{i}(z)}{-h_{i}(z) + (\mu + 1)}\right|.$$

Using the well known distorsion bounds for the class P, we have

$$\operatorname{Re}\left[h_{i}(z) + \frac{zh'_{i}(z)}{-h_{i}(z) + (\mu + 1)}\right] \ge \operatorname{Re}h_{i}(z)\left[1 + \frac{2r}{1 - r^{2}} \frac{1}{\frac{1 + r}{1 - r} - (\mu + 1)}\right]$$

$$= \operatorname{Re}h_{i}(z)\left[\frac{(1 + r)[(1 + r) - (\mu + 1)(1 - r)] + 2r}{(1 + r)[(1 + r) - (\mu + 1)(1 - r)]}\right]. \tag{3.9}$$

The right hand side of (3.9) is positive for  $r \ge r_0$ . Consequently,  $f(z) \in Q_k^{\mu+1}(a, c, \lambda, \alpha)$  for  $|z| < r_0$ , where  $r_0$  is given by (3.5).

References

- [1] B. C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), 737-745.
- [2] N. E. Cho and K.I. Noor, Inclusion properties for certain classes of meromorphic functions associated with Choi-Saigo- Srivastava operator, J. Math. Anal. Appl., 320(2006), 779-786.
- [3] J. L. Liu and H.M. Srivastava, A linear operator and associated families of meromorphically multivalued functions, J. Math. Anal. Appl., 259(2001), 566-581.
- [4] S. S. Miller, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc., 81(1975), 79-81.
- [5] K. S. Padmanbhan, R. Paravatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
- [6] B. Pinchuk, Functions of bounded boundary rotation, Isr. J. Math. , 10(1971), 6-16.

# Author:

Saqib Hussain Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan email:  $saqib\_math@yahoo.com$