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ON ORLICZ FUNCTIONS OF GENERALIZED DIFFERENCE
SEQUENCE SPACES

Ahmad H. A. Bataineh and Alaa A. Al-Smadi

Abstract. In this paper, we define the sequence spaces : [V,M, p,∆n
u, s],

[V,M, p,∆n
u, s]0 and [V,M, p,∆n

u, s]∞, where for any sequence x = (xn), the dif-
ference sequence ∆x is given by ∆x = (∆xn)∞n=1 = (xn − xn−1)∞n=1. We also exam-
ine some inclusion relations between these spaces and discuss some properties and
results related to them.
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1.Introduction and definitions

Let X be a linear space. A function p : X → R is called paranorm if the following
are satisfied :

(i) p(0) ≥ 0
(ii) p(x) ≥ 0 for all x ∈ X
(iii) p(x) = p(−x) for all x ∈ X
(iv) p(x + y) ≤ p(x) + p(y) for all x ∈ X ( triangle inequality )
(v) if (λn) is a sequence of scalars with λn → λ (n →∞) and (xn) is a sequence

of vectors with p(xn−x) → 0 (n →∞), then p(λnxn−λx) → 0 (n →∞) ( continuity
of multiplication by scalars ).

A paranorm p for which p(x) = 0 implies x = 0 is called total. It is well known
that the metric of any linear metric space is given by some total paranorm (cf.[11]).

Let Λ = (λn) a nondecreasing sequence of positive reals tending to infinity and
λ1 = 1 and λn+1 ≤ λn + 1.

The generalized de la Vallėe-Poussin means is defined by :

tn(x) =
1
λn

∑
k∈In

xk,

where In = [n− λn + 1, n]. A sequence x = (xk) is said to be (V, λ)−summable to a
number l ( see [2] ) if tn(x) → l, as n →∞.
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We write

[V, λ]0 = {x = (xk) : lim
n

1
λn

∑
k∈In

| xk |= 0}

[V, λ] = {x = (xk) : lim
n

1
λn

∑
k∈In

| xk − le |= 0, for some l ∈ C}

and

[V, λ]∞ = {x = (xk) : sup
n

1
λn

∑
k∈In

| xk |< ∞}.

For the set of sequences that are strongly summable to zero, strongly summable
and strongly bounded by the de la Vallėe-Poussin method. If λn = n for n =
1, 2, 3, · · · , then these sets reduce to ω0, ω and ω∞ introduced and studied by Maddox
[5].

Following Lidenstrauss and Tzafriri [4], we recall that an Orlicz function M is
continuous, convex, nondecreasing function defined for x ≥ 0 such that M(0) = 0
and M(x) ≥ 0 for x > 0.

If convexity of M is replaced by M(x + y) ≤ M(x) + M(y), then it is called a
modulus function, defined and studied by Nakano [8], Ruckle [10], Maddox [6] and
others.

An Orlicz function M is said to satisfy the ∆2−condition for all values of u, if
there exist a constant K > 0 such that

M(2u) ≤ KM(u) (u ≥ 0).

It is easy to see that always K > 2. The ∆2−condition is equivalent to the
satisfaction of the inequality

M(lu) ≤ KlM(u),

for all values of u and for l > 1.
Lidenstrauss and Tzafriri [4] used the idea of Orlicz function to construct the

Orlicz sequence space :

lM := {x = (xk) :
∞∑

k=1

M(
| xk |

ρ
) < ∞, for some ρ > 0},

which is a Banach space with the norm :
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‖ x ‖M= inf{ρ > 0 :
∞∑

k=1

M(
| xk |

ρ
) ≤ 1}.

If M(x) = xp, 1 ≤ p < ∞, the space lM coincide with the classical sequence
space lp.

Parashar and Choudhary [9] have introduced and examined some properties
of four sequence spaces defined by using an Orlicz function M, which generalized
the well-known Orlicz sequence space lM and strongly summable sequence spaces
[C, 1, p], [C, 1, p]0 and [C, 1, p]∞.

Let M be an Orlicz function, p = (pk) be any sequence of strictly positive real
numbers and u = (uk) be any sequence such that uk 6= 0(k = 1, 2, · · · ) . Then
Alsaedi and Bataineh [1] defined the following sequence spaces :

[V,M, p, u, ∆] = {x = (xk) : limn
1

λn

∑∞
k∈In

[M( |uk∆xk−le|
ρ )]pk = 0,

for some l and ρ > 0},

[V,M, p, u, ∆]0 = {x = (xk) : limn
1

λn

∑∞
k∈In

[M( |uk∆xk|
ρ )]pk = 0, for some ρ >

0},
and

[V,M, p, u, ∆]∞ = {x = (xk) : sup
n

1
λn

∞∑
k∈In

[M(
| uk∆xk |

ρ
)]pk < ∞, for some ρ > 0}.

Now, if n is a nonnegative integer and s is any real number such that s ≥ 0, then
we define the following sequence spaces :

[V,M, p,∆n
u, s] = {x = (xk) : limn

1
λn

∑∞
k∈In

k−s[M( |∆
n
uxk−le|

ρ )]pk = 0,
for some l, ρ > 0 and s ≥ 0},

[V,M, p∆n
u, s]0 = {x = (xk) : limn

1
λn

∑∞
k∈In

k−s[M( |∆
n
uxk|
ρ )]pk = 0,

for some ρ > 0 and s ≥ 0},
and

[V,M, p,∆n
u, s]∞ = {x = (xk) : supn

1
λn

∑∞
k∈In

k−s[M( |∆
n
uxk|
ρ )]pk < ∞,

for some ρ > 0 and s ≥ 0},

where u = (uk) is any sequence such that uk 6= 0 for each k,and

∆0
ux = ukxk,
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∆1
ux = ukxk − uk+1xk+1,

∆2
ux = ∆(∆1

ux),

...

∆n
ux = ∆(∆n−1

u x),

so that

∆n
ux = ∆n

uk
xk =

n∑
r=0

(−1)r

(
n

r

)
uk+rxk+r.

If n = 0 and s = 0, then these gives the spaces of Alsaedi and Bataineh [1].

2.Main results

We prove the following theorems :
Theorem 1. For any Orlicz function M and any sequence p = (pk) of strictly

positive real numbers, [V,M, p, ∆n
u, s], [V,M, p,∆n

u, s]0 and [V,M, p, ∆n
u, s]∞ are lin-

ear spaces over the set of complex numbers.
Proof. We shall prove only for [V,M, p,∆n

u, s]0. The others can be treated simi-
larly. Let x, y ∈ [V,M, p,∆n

u, s]0 and α, β ∈ C. In order to prove the result, we need
to find some ρ > 0 such that :

lim
n

1
λn

∑
k∈In

k−s[M(
| α∆n

uxk + β∆n
uyk |

ρ
)]pk = 0.

Since x, y ∈ [V,M, p,∆n
u, s]0, there exists some positive ρ1 and ρ2 such that :

lim
n

1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
ρ1

)]pk = 0 and lim
n

1
λn

∑
k∈In

k−s[M(
| ∆n

uyk |
ρ2

)]pk = 0.
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Define ρ = max(2 | α | ρ1, 2 | β | ρ2). Since M is nondecreasing and convex,

1
λn

∑
k∈In

k−s[M(
| α∆n

uxk + β∆n
uyk |

ρ
)]pk

≤ 1
λn

∑
k∈In

k−s[M(
| α∆n

uxk |
ρ

+
| β∆n

uyk |
ρ

)]pk

≤ 1
λn

∑
k∈In

k−s 1
2pk

[M(
| ∆n

uxk |
ρ1

) + M(
| ∆n

uyk |
ρ2

)]pk

≤ 1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
ρ1

) + M(
| ∆n

uyk |
ρ2

)]pk

≤ K.
1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
ρ1

)]pk + K.
1
λn

∑
k∈In

k−s[M(
| ∆n

uyk |
ρ2

)]pk → 0,

as n →∞, where K = max(1, 2H−1), H = sup pk, so that αx+βy ∈ [V,M, p,∆n
u, s]0.

This completes the proof.
Theorem 2. For any Orlicz function M and a bounded sequence p = (pk) of

strictly positive real numbers, [V,M, p, ∆n
u, s]0 is a total paranormed space with :

g(x) = inf{ρpn/H : (
1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
ρ

)]pk)1/H ≤ 1, n = 1, 2, 3, · · · },

where H = max(1, sup pk).
Proof. Clearly g(x) = g(−x). By using Theorem 2.1, for α = β = 1, we get

g(x+y) ≤ g(x)+g(y). Since M(0) = 0, we get inf{ρpn/H} = 0 for x = 0. Conversely,
suppose g(x) = 0, then :

inf{ρpn/H : (
1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
ρ

)]pk)1/H ≤ 1} = 0.

This implies that for a given ε > 0, there exists some ρε (0 < ρε < ε) such that :

(
1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
ρε

)]pk)1/H ≤ 1.

Thus,

(
1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
ε

)]pk)1/H ≤ (
1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
ρε

)]pk)1/H ≤ 1, for each n.
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Suppose that xnm 6= 0 for some m ∈ In, then (∆n
uxnm

ε ) →∞. It follows that :

(
1
λn

∑
k∈In

k−s[M(
| ∆n

uxnm |
ε

)]pk)1/H →∞

which is a contradiction. Therefor xnm = 0 for all m. Finally we prove that scalar
multiplication is continuous. Let µ be any complex number, then by definition,

g(µx) = inf{ρpn/H : (
1
λn

∑
k∈In

k−s[M(
| µ∆n

uxk |
ρ

)]pk)1/H ≤ 1, n = 1, 2, 3, · · · }.

Then
g(µx) = inf{(| µ | t)pn/H : ( 1

λn

∑
k∈In

k−s[M( |µ∆n
uxk|
t )]pk)1/H ≤ 1 ≤ 1, n = 1, 2, 3, · · · },

where t = ρ/ | µ | . Since | µ |pn≤ max(1, | µ |sup pn), we have

g(µx) ≤ (max(1, | µ |sup pn))1/H . inf{(t)pn/H

: (
1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
t

)]pk)1/H ≤ 1, n = 1, 2, 3, · · · }

which converges to zero as x converges to zero in [V,M, p,∆n
u, s]0.

Now suppose µm → 0 and x is fixed in [V,M, p,∆n
u, s]0. For arbitrary ε > 0, let

N be a positive integer such that

1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
ρ

)]pk < (ε/2)H for some ρ > 0 and all n > N.

This implies that

1
λn

∑
k∈In

k−s[M(
| ∆n

uxk |
ρ

)]pk < ε/2 for some ρ > 0 and all n > N.

Let 0 <| µ |< 1, using convexity of M, for n > N, we get

1
λn

∑
k∈In

k−s[M(
| µ∆n

uxk |
ρ

)]pk <
1
λn

∑
k∈In

k−s[| µ | M(
| ∆n

uxk |
ρ

)]pk < (ε/2)H .

Since M is continuous everywhere in [0,∞), then for n ≤ N,

f(t) =
1
λn

∑
k∈In

k−s[M(
| t∆n

uxk |
ρ

)]pk
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is continuous at zero. So there exists 1 > δ > 0 such that | f(t) |< (ε/2)H for
0 < t < δ.

Let K be such that | µm |< δ for m > K and n ≤ N, then

(
1
λn

∑
k∈In

k−s[M(
| µm∆n

uxk |
ρ

)]pk)1/H < ε/2.

Thus
(

1
λn

∑
k∈In

k−s[M(
| µm∆n

uxk |
ρ

)]pk)1/H < ε,

for m > K and all n, so that g(µx) → 0 (µ → 0).
Theorem 3. For any Orlicz function M which satisfies the ∆2−condition, we

have [V, λ,∆n
u, s] ⊆ [V,M,∆n

u, s], where
[V , λ,∆n

u, s] = {x = (xk) : limn
1

λn

∑
k∈In

k−s| ∆n
uxk−le |= 0 , for some l ∈C}.

Proof. Let x ∈ [V, λ,∆n
u, s]. Then

Tn =
1
λn

∑
k∈In

k−s | ∆n
uxk − le |→ 0 as n →∞, for some l.

Let ε > 0 and choose δ with 0 < δ < 1 such that M(t) < ε for 0 ≤ t ≤ δ. Write
yk =| ∆n

uxk − le | and consider

1
λn

∑
k∈In

k−sM(| yk |) =
∑

1

+
∑

2

,

where the first summation over yk ≤ δ and the second over yk > δ. Since M is
continuous, ∑

1

< λnε

and for yk < δ, we use the fact that yk < yk/δ < 1+ yk/δ. Since M is nondecreasing
and convex, it follows that

M(yk) < M(1 + δ−1yk) <
1
2
M(2) +

1
2
M(2δ−1yk).

Since M satisfies the ∆2−condition, there is a constant K > 2 such that M(2δ−1yk) ≤
1
2Kδ−1ykM(2), therefor

M(yk) <
1
2
Kδ−1ykM(2) +

1
2
Kδ−1ykM(2)

= Kδ−1ykM(2).
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Hence ∑
2

M(yk) ≤ Kδ−1M(2)λnTn

which together with
∑

1 ≤ ελn yields [V, λ,∆n
u, s] ⊆ [V,M,∆n

u, s]. This completes
the proof.

The method of the proof of Theorem 3 shows that for any Orlicz function
M which satisfies the ∆2−condition, we have [V, λ,∆n

u, s]0 ⊆ [V,M,∆n
u, s]0 and

[V, λ,∆n
u, s]∞ ⊆ [V,M,∆n

u, s]∞, where

[V, λ,∆n
u, s]0 = {x = (xk) : lim

n

1
λn

∑
k∈In

k−s | ∆n
uxk |= 0},

and

[V, λ,∆n
u, s]∞ = {x = (xk) : sup

n

1
λn

∑
k∈In

k−s | ∆n
uxk |< ∞}.

Theorem 4. Let 0 ≤ pk ≤ qk and (qk/pk) be bounded. Then [V,M, q,∆n
u, s] ⊂

[V,M, p,∆n
u, s].

Proof. The proof of Theorem 4 used the ideas similar to those used in
proving Theorem 7 of Parashar and Choudhary [9].Mursaleen [7] introduced the
concept of statistical convergence as follows :

A sequence x = (xk) is said to be λ−statistically convergent or sλ−statistically
convergent to L if for every ε > 0,

lim
n

1
λn

| {k ∈ In :| xk − L |≥ ε} |= 0,

where the vertical bars indicates the number of elements in the enclosed set. In this
case we write sλ− lim x = L or xk → L (sλ) and sλ = {x : ∃L ∈ R:sλ− lim x = L}.In
a similar way, we say that a sequence x = (xk) is said to be (λ, ∆n

u)−statistically
convergent or sλ(∆n

u)−statistically convergent to L if for every ε > 0,

lim
n

1
λn

| {k ∈ In :| ∆n
uxk − Le |≥ ε} |= 0,

where the vertical bars indicates the number of elements in the enclosed set. In this
case we write sλ(∆n

u) − lim x = Le or ∆n
uxk → Le (sλ) and sλ(∆n

u) = {x : ∃L ∈
R:sλ(∆n

u)− lim x = Le}.
Theorem 5. For any Orlicz function M, [V,M,∆n

u, s] ⊂ sλ(∆n
u).
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Proof. Let x ∈ [V,M,∆n
u, s] and ε > 0. Then

1
λn

∑
k∈In

k−sM(
| ∆n

uxk − le |
ρ

) ≥ 1
λn

∑
k∈In,|∆n

uxk−le|≥ε

M(
| ∆n

uxk − le |
ρ

)

≥ 1
λn

M(ε/ρ). | {k ∈ In :| ∆n
uxk − le |≥ ε} |

from which it follows that x ∈ sλ(∆n
u).

To show that sλ(∆n
u) strictly contain [V,M,∆n

u, s], we proceed as in [7]. We
define x = (xk) by (xk) = k if n− [

√
λn] + 1 ≤ k ≤ n and (xk) = 0 otherwise. Then

x /∈ l∞(∆n
u, s) and for every ε (0 < ε ≤ 1),

1
λn

| {k ∈ In :| ∆n
uxk − 0 |≥ ε} |= [

√
λn]

λn
→ 0 as n →∞

i.e. x → 0 (sλ(∆n
u)), where [ ] denotes the greatest integer function. On the other

hand,
1
λn

∑
k∈In

k−sM(
| ∆n

uxk − 0 |
ρ

) →∞ as n →∞

i.e. xk 9 0 [V,M,∆n
u, s]. This completes the proof.
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