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EXISTENCE THEOREM FOR FREDHOLM TYPE INTEGRAL
EQUATIONS WITH MODIFIED ARGUMENT

Monica Lauran

Abstract In this paper some existence theorems for a Fredholm integral equa-
tion, are given by using nonexpansive mapping technique in L2 (Ω).

1. Introduction

In the paper [2], the author studies a Fredholm type integral equation of the
form

y(x) = f(x) + λ

∫
Ω

K(x, s, y(s))ds, (1)

in L2 (Ω) using Contraction mapping principle. The purpose of this paper is to
establish an existence theorems for a kind of Fredholm integral equation, where the
mapping associated to equation is nonexpansive. Let Ω ⊂ Rn be a measurable set.
A function f : Ω → R Lebesgue measurable is called square summabile, if∫

Ω

f2(x)dx < ∞

Denote by L2 (Ω, R) the square summabile real functions set. It is well known that

L2 (Ω, R) with norm ‖y‖L2(Ω) =
(∫

Ω

f2(x)dx

)1/2

is uniformly convex Banach space.

Theorem 1. (Browder-Ghode-Kirk) Let X be a uniformly convex Banach space
and Y ⊂ X, Y nonempty, bounded, closed and convex subset. If f : Y → Y be an
nonexpansive map, then f has a fixed point.

In paper [2], the author studies the solvability of equation (1.1) in L2 (Ω) by
using the contraction mapping principle. Suppose that
K : Ω× Ω× R → R satisfies Caratheodory condition, that means:
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(a) f (•, •, u) is measurable in Ω× Ω, for any u ∈ R

(b) f (t, s, •) is continuous in R, for almost all t ∈ Ω and s ∈ Ω.

Theorem 2. (I.A.Rus,[2]) Suppose that

(i) f ∈ L2 (Ω) and there exists L ∈ L2 (Ω× Ω) such that
|K (x, s, u)−K (x, s, v)| ≤ L (x, s) · |u− v| for any x, s ∈ Ω and u, v ∈ R;

(ii)
∫
Ω

K (•, s, 0) ds ∈ L2 (Ω);

(iii) |λ| < 1
||L||L2(Ω×Ω)

;

In this conditions, the equation (1.1) has a solution in L2 (Ω) which is obtained by
succesive approximation method started from any element on L2 (Ω).

2. Main results

We extend the Rus theorem, using the technique of nonexpansive mappings
instead of the technique of Picard operators. We study the solvability of Fredholm
integral equation with modified argument in L2 (Ω):

x(t) = f(t) +
∫
Ω

K(t, s, x(s), x(g(s)))ds, (2)

where
K : Ω× Ω× R× R → R;
f : Ω → R;
g : Ω → Ω.

Denote B (f, r) = {x ∈ L2(Ω)/ ||x− f | |L2(Ω) ≤ r, r > 0} ⊂ L2 (Ω)

Theorem 3. Assume that the following conditions are satisfied:

(i) K(t, s, x, y) satisfied the Caratheodory condition, i.e

(a) K(t, s, •, •) is continuous almost everywhere in R2 for almost all t ∈ Ω and s ∈ Ω;

(b) K(•, •, x, y) is measurable in Ω× Ω, for any (x, y) ∈ R2 fixed.

(ii) f ∈ L2(Ω) and there exists L ∈ L2(Ω× Ω) such that

|K(t, s, u1, u2)−K(t, s, v1, v2)| ≤ L(t, s) · (|u1 − v1|+ |u2 − v2|) ,

for any t, s ∈ Ω and ui, vi ∈ R, i = 1, 2.

(iii) ||L| |L2(Ω×Ω) ·mes(Ω) ≤ 1
2 ;
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(iv) M ·mes (Ω) ≤ r, where M is a positiv constant for which

||K(t, s, u1, u2)| |L2(Ω) ≤ M,

for any t, s ∈ Ω and u1, u2 ∈ R.
Then the equation (2) has a solution in B (f, r) ⊂ L2(Ω).

Denote (
Ãx

)
(t) =

∫
Ω

K(t, s, x(s), x(g(s)))ds,

(Ax) (t) = f(t) +
(
Ãx

)
(t).

The set of the solutions of the integral equation (2) coincides with the set of fixed
points of the operator A in L2(Ω).
We show that A : B (f, r) → B (f, r). We take x ∈ B (f, r) and we prove that
Ax ∈ B (f, r).
For x ∈ B (f, r) ⇔ ||x− f | |L2(Ω) ≤ r

(Ax) (t)− f(t) =
(
Ãx

)
(t) =

∫
Ω

K(t, s, x(s), x(g(s)))ds.

Using the norm we obtain that ||Ax− f | |L2(Ω) ≤ M · mes(Ω) ≤ r, so Ax ∈
B(f, r), A is well defined and

A
(
B (f, r)

)
⊂ B (f, r) .

We show that A is a nonexpansive operator.

|(Ax)(t)− (Ay)(t)| =

∣∣∣∣∣∣
∫
Ω

(K(t, s, x(s), x(g(s)))−K(t, s, y(s), y(g(s)))ds)

∣∣∣∣∣∣ ≤∫
Ω

|K(t, s, x(s), x(g(s)))−K(t, s, y(s), y(g(s)))| ds ≤
∫
Ω

L(t, s) · (|x(s)− y(s)|+

+ |x(g(s))− y(g(s))|)ds

Using the L2(Ω) norm in last inequality, we obtain:

||Ax−Ay| |L2(Ω) ≤ ||L| |L2(Ω×Ω) · 2 · ||x− y| |L2(Ω) ·mes(Ω)

For ||L| |L2(Ω) ·mes(Ω) ≤ 1
2 we obtain:

||Ax−Ay| |L2(Ω) ≤ ||x− y| |L2(Ω).
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In the case ||L| |L2(Ω) · mes(Ω) < 1
2 the result follows by Theorem 1.2 using the

technique of Picard operators. In equality case A is a nonexpansive mapping and
using Browder-Ghode-Kirk theorem (Theorem 1.1) for A : B (f, r) → B (f, r),it
results that A has a fixed point. We know that B (f, r) is nonempty, bounded,
convex and closed subset of L2(Ω).
The integral equation (2) has a solution in B (f, r) ⊂ L2(Ω) but is not unique.

Remark 1. If Ω = [a, b] then by Theorem 1.2 we obtain a result for equation (2),
see [3].

Generalization
We consider the integral equation with modified argument :

x(t) = f(t) +
∫
Ω

K(t, s, x(g1(s)), ..., x(gm(s)))ds (3)

where:
K : Ω× Ω× Rm → R;
f : Ω → R;
gk : Ω → Ω, k = 1,m.

Theorem 4. Assume that the following conditions are satisfied:

(i) K(t, s, x(g1), ..., x(gm)) satisfied the Caratheodory condition, i.e

(a) K(t, s, •, •), ..., •) is continuous almost everywhere in Rm for almost all t ∈ Ω
and s ∈ Ω;

(b) K(•, •, x(g1), ..., x(gm)) is measurable in Ω× Ω, for any x(gi) ∈ Rm, i = 1,m
fixed.

(ii) f ∈ L2(Ω) and there exists L ∈ L2(Ω× Ω) such that

|K(t, s, u1, u2, ..., um)−K(t, s, v1, v2, ..., vm)| ≤ L(t, s) ·
m∑

i=1

‖ui − vi‖L2(Ω) ,

for any t, s ∈ Ω and ui, vi ∈ Rm, i = 1,m.

(iii) ||L| |L2(Ω×Ω) ·mess(Ω) ≤ 1
m ;

(iv) M ·mes (Ω) ≤ r, where M is a positiv constant for which

||K(t, s, u1, u2, ..., um)| |L2(Ω) ≤ M,

for any t, s ∈ Ω and ui ∈ R, i = 1,m.
Then the equation (3) has a solution in B(f, r) ⊂ L2(Ω).
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Similarly, we define the operator

(Ax) (t) = f(t) +
∫
Ω

K(t, s, x(g1(s)), ..., x(gm(s)))ds, x ∈ B(f, r).

In similarly case the operator A map B(f, r) ⊂ L2(Ω) in itself. We obtain

‖Ax−Ay‖L2(Ω) ≤ ‖L‖L2(Ω×Ω) ·m ·mess(Ω) · ‖x− y‖

Thus, by the same proof as given in Theorem 2.3, we can prove that in equality case
A is nonexpansive map and it has a fixed point.The solution of integral equation (3)
is the fixed point of operator A.

3. Examples

Example 1. Consider the integral equation with deviating argument:

x(t) = t2 +

a∫
1

e−t · s2 · x(s) · x(s− e−s)ds (4)

Note that the above equation represent a special case of (2.2) where

f(t) = t2, K(t, s, x(s), x(g(s))) = e−t · s2 · x(s) · x(s− e−s).

B(t2, r) =
{
x ∈ L2(Ω)/

∣∣|x− t2
∣∣ |L2(Ω) ≤ r

}
,

where Ω = [1, a]. It is easily seen that for (4), the assumption (ii) of Theorem 2.3 is
satisfied with L(t, s) = e−t · s2.
In this case the assumption (iv) is satisfied for the constant M = a2 · r2 and r ≤

1
a2(a−1)

. Moreover the assumption (iii) of Theorem 2.3 is satisfied for

(a− 1) ·

√√√√√ a∫
1

a∫
1

(e−t · s2)2 · dsdt =

√
−e−2a + e−2

2
· a5 − 1

5
· (a− 1) ≤ 1

2

In this case we obtain a ≈ 1.29. Note that Theorem 1.2 cannot be applied.
For a good approximation of M we take M = a2

e and we obtain from (iii) and (iv)

r ≤ e

a2 · (a− 1)
and a2(a− 1) ≤ e

2

with a solution of inequation a ≈ 1.559
So, for Ω = [1; a] the equation (4) has a solution in B(t2, r) ⊂ L2(Ω).
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Example 2. Consider the integral equation with deviating argument:

x(t) = t +

a∫
1

[
e−t · x(s) + s · x(s− e−s)

]
ds (5)

In this case f(t) = t, K(t, s, x(s), x(g(s))) = e−t · x(s) + s · x(s− e−s) and

B(t, r) =
{
x ∈ L2(Ω)/ ||x− t| |L2(Ω) ≤ r

}
,

where Ω = [1, a].
The assumption (ii) of Theorem 2.3 is satisfied for L(t, s) = max{e−t, s} for t, s ∈
[1, a]. From the assumptions (iii) and (iv) and a good approximation of L(t, s) and
M = a2(r + 1)2, we obtain the inequation

(a− 1)2 ·
√

a2 + a + 1
3

≤ (a− 1)2 · a ≤ 1
2

with a solution of inequation a = 1, 565 and a2 · (r + 1)2 · (a− 1) ≤ r. In this case,
for equality, the Theorem 1.2 cannot be applied.
The equation (5) has a solution in B(t, r) ⊂ L2(Ω).
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