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Abstract. In the first part of the paper a generalized p-cochain on
C∞(M) is defined, followed in the second part by some of its properties and
applications in distributional symplectic geometry.
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1. Introduction

Let M be a smooth 2n-dimmensional manifold and ω a symplectic structure

on M . We denote by C∞(M) (resp. X ′(M), resp.
p

D′(M)) the space of smooth
(C∞) functions (resp. the spaced of generalized vector fields, resp. the space of
p-De Rham currents) on M endowed with the uniform convergence topology.
We remind that in local chart a generalized vector field (resp. an p-De Rham
current) is a smooth vector field (resp. a smooth p-form) with distributions
coefficients instead of smooth ones.

Definition 1.1. A generalized p-cochain on C∞(M) is an alternating p-
linear map

m : C∞(M)× ...× C∞(M) −→
0

D′(M).

We shall denote by
p

C ′(C∞) the space of generalized p-cochains on C∞(M).

Examples. 1) Each generalized vector field X ∈ X ′(M) defines in a
natural way a generalized 1-cochain.

2) The map = defined by

K :
p

D′(M) −→ K(T ) ∈
p

C ′(C∞),

K(T )(f1, ..., fp)
def
= T (ξf1 , ..., ξfp)
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is a generalized 1-cochain.

3) There exists a linear map K from the space of De Rham currents into
the space of generalized cochains, namely:

K :
p

D′(M) −→ K(T ) ∈
p

C ′(C∞),

K(T )(f1, ..., fp)
def
= T (ξf1 , ..., ξfp)

for any f1, ..., fp ∈ C∞(M) and where ξfi
is the Hamiltonian vector field asso-

ciated to fi (i.e. Lξfi
ω + dfi).

The coboundary of generalized p-cochains is defined as usual; in the par-
ticular case of a generalized 1-cochain we have:

∂m(f1, f2) = Lξfi
m(f2)− Lξf2

m(f1)−m{f1, f2}.

2. Some properties of generalized cochains

Some properties for generalized cochains are given in the following state-
ments:

Proposition 2.1. i) K is an injective map.
ii) If T = Tω is the form like 2-current defind by the symplectic form ω (i.e.

Tω : ϕ ∈
2n−2

D (M) −→< Tω, ϕ >=
∫
M

ω ∧ ϕ, where
p

D(M) denotes the space of

p-forms with compact support on M), then

K(Tω) = −∂=.

iii) For each α ∈ R, S ∈
1

D′(M) we have

K(αTω + dS) = −∂(α=+ K(S)).

The proof can be obtained immediately using the definitions of K and =.

Proposition 2.2. i) If ω̃ is the canonical isomorphism given by

ω̃ : X ∈ X ′(M) −→ ω̃(X)
def
= X y ω ∈

1

D′(M)
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then

K

∣∣∣∣ 1

D′(M) = −ω̃−1.

ii) Let X be a generalized vector field on M . Then for each f, g ∈ C∞(M)
we have:

X(f, g) = −LXω(ξf , ξg).

iii) X ∈ X ′(M) is a generalized 1-cocycle (i.e. ∂X = 0) if and only if
X ∈ X ′

loc(M) (i.e. LXω = 0).
iv) X ∈ X ′(M) is a generalized 1-coboundary if and only if X ∈ X ′

glob(M)
(i.e. X y ω + dH = 0).

Proof. i) Since the space
1

D′(M) can be identified with {X y ω | X ∈
X ′(M)}, for any f ∈ C∞(M), we get successively:

Kω̃(X)(f) = ω̃(X)(ξf ) = (X y ω)(ξf ) = −X(f).

so
K ◦ ω̃ = −IdX′(M),

or equivalent:

K = −ω̃−1.

ii) For any f, g ∈ C∞(M) we can write:
∂X(f, g) = ∂ω̃ω̃−1(X)(f, g)

= −dω̃(X)(ξf , ξg)
= −d(X y ω)(ξf , ξg)
= −LXω(ξf , ξg).

Now the relation iii) and iv) can be derived immediately from ii)

Definition 2.1. We say that m ∈
1

C ′(C∞) is a locally generalized p-cochain
if, given an open set U ⊂ M and p-functions f1, ..., fp with

f1|U = f2|U = ... = fp|U ,

then
m(f1, ..., fp)|U = 0.

Proposition 2.3. Let T ∈
2

D′(M) be an 2-De Rham current on M . Then
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i) K(T ) is a locally generalized 2-cochain.
ii) For any f, g ∈ C∞(M) the following equality holds:

K(T )(f 2, g) = 2fK(T )(f, g).

Proof. i) Let U be an open set in M and f ∈ C∞(M) such that f |U = 0.
Then for each g ∈ C∞(M) we have:

K(T )(f, g)|U = T (ξf , ξg)|U .

Since

ξf =
n∑

i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
,

and

T |U =
n∑

i,j=1

(T ijdpi ∧ dpj + Tijdqi ∧ dqj + ...),

it follows that:

T (ξf , ξg)|U =
n∑

i,j=1

(
T ij ∂f

∂qi

∂g

∂qj
+ Tij

∂f

∂pi

∂g

∂pj

+ ...

)
.

Since each term involves a partial derivative of f , clearly T (ξf , ξg) vanishes
on U , so K(T ) is a locally generalized 2-cochain.

ii) For any f, g ∈ C∞(M) we can write successively:

K(T )(f 2, g) = T (ξf2 , ξg)
= T (2fξf , ξg)
= 2fT (ξf , ξg)
= 2fK(T )(f, g).

Also, as for classical cochains we can prove the following result:

Remark 2.1 Let (M, ω) be a non-compact symplectic manifold and m ∈
2

C ′(C∞). Then m is a locally generalized 2-cochain if and only if m has the
same property.
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