SUFFICIENT CONDITIONS FOR UNIVALENCE OF A GENERAL INTEGRAL OPERATOR

C.Selvaraj and K.R.Karthikeyan

ABSTRACT. Using Dziok-Srivastava operator, we define a new family of integral operators. For this general integral operator we study some interesting univalence properties, to which a number of univalent conditions would follow upon specializing the parameters involved.

2000 Mathematics Subject Classification: 30C45.

Keywords and Phrases: Analytic functions, univalent functions, Hadamard product (or convolution), integral operators.

1. Introduction, Definitions And Preliminaries

Let $A_1 = A$ denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad a_n \ge 0, \tag{1}$$

which are analytic in the open disc $\mathcal{U} = \{z : z \in \mathbb{C} \mid z \mid < 1\}$ and \mathcal{S} be the class of function $f(z) \in \mathcal{A}$ which are univalent in \mathcal{U} .

For $\alpha_j \in \mathbb{C}$ (j = 1, 2, ..., q) and $\beta_j \in \mathbb{C} \setminus \{0, -1, -2, ...\}$ (j = 1, 2, ..., s), the generalized hypergeometric function ${}_qF_s(\alpha_1, ..., \alpha_q; \beta_1, ..., \beta_s; z)$ is defined by the infinite series

$${}_{q}F_{s}(\alpha_{1}, \alpha_{2}, \dots, \alpha_{q}; \beta_{1}, \beta_{2}, \dots, \beta_{s}; z) = \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n} \dots (\alpha_{q})_{n}}{(\beta_{1})_{n} \dots (\beta_{s})_{n}} \frac{z^{n}}{n!}$$

$$(q \leq s+1; q, s \in N_{0} = \{0, 1, 2, \dots\}; z \in \mathcal{U}),$$

where $(x)_n$ is the Pochhammer symbol defined by

$$(x)_n = \begin{cases} 1 & if \ n = 0 \\ x(x+1)(x+2) & \dots & (x+n-1) \end{cases} \quad if \ n \in \mathbb{N} = \{1, 2, \dots\}.$$

Corresponding to a function $h(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z)$ defined by

$$h(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z) := z_q F_s(\alpha_1, \alpha_2, \ldots, \alpha_q; \beta_1, \beta_2, \ldots, \beta_s; z),$$

the Dziok and Srivastava operator $H(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z) f(z)$ is defined by the Hadamard product

$$H(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z) f(z) := h(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z) * f(z)$$

$$= z + \sum_{i=1}^{\infty} \frac{(\alpha_1)_{n-1} \dots (\alpha_q)_{n-1}}{(\beta_1)_{n-1} \dots (\beta_s)_{n-1}} \frac{a_n z^n}{(n-1)!}$$
(2)

For convenience, we write

$$H_s^q(\alpha_1, \beta_1)f := H(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z)f(z).$$

The linear operator $H_s^q(\alpha_1, \beta_1)f$ includes (as its special cases) various other linear operators which were introduced and studied by Hohlov, Carlson and Shaffer, Ruscheweyh. For details see [1].

Using Dziok-Srivastava operator, we now introduce the following:

Definition 1. For $\gamma \in \mathbb{C}$. We now define the integral operator $F_{\gamma}(\alpha_1, \beta_1; z)$: $\mathcal{A}^n \longrightarrow \mathcal{A}$

$$F_{\gamma}(\alpha_1, \beta_1; z) = \left(\left(1 + n(\gamma - 1) \right) \int_0^z \left(H_s^q(\alpha_1, \beta_1) f_1(t) \right)^{\gamma - 1} \dots \right)$$
 (3)

$$\left(H_s^q(\alpha_1,\beta_1)f_n(t)\right)^{\gamma-1}dt$$

where $f_i \in \mathcal{A}$ and $H_s^q(\alpha_1, \beta_1) f(z)$ is the Dziok-Srivastava operator.

Remark 1. It is interesting to note that the integral operator $F_{\gamma}(\alpha_1, \beta_1; z)$ generalizes many operators which were introduced and studied recently. Here we list a few of them

1. Let $q=2, s=1, \alpha_1=\beta_1$ and $\alpha_2=1$, then the operator $F_{\gamma}(\alpha_1,\alpha_1;z)$ reduces to an integral operator

$$F_{\gamma}(z) = \left[(n(\gamma - 1) + 1) \int_{0}^{z} (f_{1}(t))^{\gamma - 1} \dots (f_{n}(t))^{\gamma - 1} dt. \right]^{\frac{1}{(n(\gamma - 1) + 1)}}, \quad (4)$$

studied by D.Breaz and N.Breaz [2].

2. When $q=2, s=1, \alpha_1=2, \beta_1=1$ and $\alpha_2=1$, the integral operator $F_{\gamma}(2,1;z)$ reduces to an operator of the form

$$F_{\gamma}(z) = \left[(n(\gamma - 1) + 1) \int_{0}^{z} t^{n(\gamma - 1)} (f'_{1}(t))^{\gamma - 1} \dots (f'_{n}(t))^{\gamma - 1} dt. \right]^{\frac{1}{(n(\gamma - 1) + 1)}},$$
(5)

where $\gamma \geq 0$.

We now state the following lemma which we need to establish our results in the sequel.

Lemma 1.[3] If $f \in A$ satisfies the condition

$$\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| \le 1, \quad \text{for all } z \in \mathcal{U}, \tag{6}$$

then the function f(z) is univalent in \mathcal{U} .

Lemma 2.(Schwartz Lemma) Let $f \in \mathcal{A}$ satisfy the condition $| f(z) | \leq 1$, for all $z \in \mathcal{U}$, then

$$| f(z) | \le | z |$$
, for all $z \in \mathcal{U}$,

and equality holds only if $f(z) = \epsilon z$, where $|\epsilon| = 1$.

Pascu [4, 5] has proved the following result

Lemma 3. Let $\beta \in \mathbb{C}$, $Re\beta \geq \alpha > 0$. If $f \in \mathcal{A}$ satisfies

$$\frac{1-\mid z\mid^{2Re\,\alpha}}{Re\,\alpha}\left|\frac{zf''(z)}{f'(z)}\right|\leq 1\quad (z\in\mathcal{U}),$$

then the integral operator

$$F_{\beta}(z) = \left[\beta \int_0^z t^{\beta - 1} f'(t) dt\right]^{\frac{1}{\beta}}$$

is univalent.

Lemma 4. Let $g \in \mathcal{A}$ satisfies the condition (6) and let α be a complex number with $|\alpha - 1| \leq \frac{Re \alpha}{3}$. If $|g(z)| \leq 1$, $\forall z \in \mathcal{U}$ then the function

$$G_{\alpha}(z) = \left(\alpha \int_{0}^{z} g^{(\alpha-1)}(t)dt\right)^{\frac{1}{\alpha}}$$

belongs to S.

2. Main Results

Theorem 1. Let $f_i \in \mathcal{A}, \ \gamma \in \mathbb{C}$. If

$$\left| \frac{z^2 (H_s^q(\alpha_1, \beta_1) f_i(z))'}{(H_s^q(\alpha_1, \beta_1) f_i(z))^2} - 1 \right| \le 1, \quad |\gamma - 1| \le \frac{Re \gamma}{3n}, \quad and \mid H_s^q(\alpha_1, \beta_1) f_i(z) \mid \le 1$$

for all $z \in \mathcal{U}$ then $F_{\gamma}(\alpha_1, \beta_1; z)$ given by (3) is univalent.

Proof. From the definition of the operator $H_s^q(\alpha_1, \beta_1) f(z)$, it can be easily seen that

$$\frac{H_s^q(\alpha_1, \beta_1)f(z)}{z} \neq 0 \quad (z \in \mathcal{U})$$

and moreover for z = 0, we have

$$\left(\frac{H_s^q(\alpha_1,\beta_1)f_1(z)}{z}\right)^{\gamma-1} \dots \left(\frac{H_s^q(\alpha_1,\beta_1)f_n(z)}{z}\right)^{\gamma-1} = 1$$

From (3), we have

$$F_{\gamma}(\alpha_1, \beta_1; z) = \left(\left(1 + n(\gamma - 1) \right) \int_0^z t^{n(\gamma - 1)} \left(\frac{H_s^q(\alpha_1, \beta_1) f_1(t)}{t} \right)^{\gamma - 1} \dots \left(\frac{H_s^q(\alpha_1, \beta_1) f_n(t)}{t} \right)^{\gamma - 1} dt \right)^{\frac{1}{1 + n(\gamma - 1)}}.$$

We consider the function

$$h(z) = \int_0^z \left(\frac{H_s^q(\alpha_1, \beta_1) f_1(t)}{t}\right)^{\gamma - 1} \dots \left(\frac{H_s^q(\alpha_1, \beta_1) f_n(t)}{t}\right)^{\gamma - 1} dt \tag{7}$$

The function h is regular in \mathcal{U} and from (7) we obtain

$$h'(z) = \left(\frac{H_s^q(\alpha_1, \beta_1) f_1(z)}{z}\right)^{\gamma - 1} \dots \left(\frac{H_s^q(\alpha_1, \beta_1) f_n(z)}{z}\right)^{\gamma - 1}$$

and

$$h''(z) = (\gamma - 1) \left(\frac{(H_s^q(\alpha_1, \beta_1) f_1(z))'}{H_s^q(\alpha_1, \beta_1) f_1(z)} - \frac{1}{z} \right) h'(z) + \dots$$
$$+ (\gamma - 1) \left(\frac{(H_s^q(\alpha_1, \beta_1) f_n(z))'}{H_s^q(\alpha_1, \beta_1) f_n(z)} - \frac{1}{z} \right) h'(z)$$

From the above inequalities we have

$$\frac{zh''(z)}{h'(z)} = (\gamma - 1) \left(\frac{z(H_s^q(\alpha_1, \beta_1) f_1(z))'}{H_s^q(\alpha_1, \beta_1) f_1(z)} - 1 \right) + \dots$$

$$+ (\gamma - 1) \left(\frac{z(H_s^q(\alpha_1, \beta_1) f_n(z))'}{H_s^q(\alpha_1, \beta_1) f_n(z)} - 1 \right).$$
(8)

On multiplying the modulus of equation (8) by $\frac{1-|z|^{2Re\gamma}}{Re\gamma} > 0$, we obtain

$$\frac{1 - |z|^{2Re\gamma}}{Re\gamma} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1 - |z|^{2Re\gamma}}{Re\gamma} \left[|\gamma - 1| \left(\left| \frac{z(H_s^q(\alpha_1, \beta_1) f_1(z))'}{H_s^q(\alpha_1, \beta_1) f_1(z)} \right| + 1 \right) + \dots + |\gamma - 1| \left(\left| \frac{z(H_s^q(\alpha_1, \beta_1) f_1(z))'}{H_s^q(\alpha_1, \beta_1) f_n(z)} \right| + 1 \right) \right] \\
\leq |\gamma - 1| \frac{1 - |z|^{2Re\gamma}}{Re\gamma} \left(\left| \frac{z^2(H_s^q(\alpha_1, \beta_1) f_1(z))'}{(H_s^q(\alpha_1, \beta_1) f_1(z))^2} \right| \frac{|H_s^q(\alpha_1, \beta_1) f_1(z)|}{|z|} + 1 \right) + \dots + |\gamma - 1| \frac{1 - |z|^{2Re\gamma}}{Re\gamma} \left(\left| \frac{z^2(H_s^q(\alpha_1, \beta_1) f_n(z))'}{(H_s^q(\alpha_1, \beta_1) f_n(z))^2} \right| \frac{|H_s^q(\alpha_1, \beta_1) f_n(z)|}{|z|} + 1 \right).$$

Since $H_s^q(\alpha_1, \beta_1) f(z)$ satisfies the conditions of the Schwartz Lemma, on ap-

plying the same on the above inequality, we obtain

$$\frac{1 - |z|^{2Re\gamma}}{Re\gamma} \left| \frac{zh''(z)}{h'(z)} \right| \leq |\gamma - 1| \frac{1 - |z|^{2Re\gamma}}{Re\gamma} \left(\left| \frac{z^{2}(H_{s}^{q}(\alpha_{1}, \beta_{1})f_{1}(z))'}{(H_{s}^{q}(\alpha_{1}, \beta_{1})f_{1}(z))'} - 1 \right| + 2 \right) + \dots + |\gamma - 1| \frac{1 - |z|^{2Re\gamma}}{Re\gamma} \left(\left| \frac{z^{2}(H_{s}^{q}(\alpha_{1}, \beta_{1})f_{n}(z))'}{(H_{s}^{q}(\alpha_{1}, \beta_{1})f_{n}(z))'} - 1 \right| + 2 \right) \\
\leq \frac{3|\gamma - 1|}{Re\gamma} + \dots + \frac{3|\gamma - 1|}{Re\gamma} = \frac{3n|\gamma - 1|}{Re\gamma}.$$

But $| \gamma - 1 | \leq \frac{Re \gamma}{3n}$, so we obtain for all $z \in \mathcal{U}$

$$\frac{1-|z|^{2Re\gamma}}{Re\gamma} \left| \frac{zh''(z)}{h'(z)} \right| \le 1. \tag{9}$$

It follows from Lemma 3 that

$$\left(\left(1+n(\gamma-1)\right)\int_{0}^{z}t^{n(\gamma-1)}h'(t)\,dt\right)^{\frac{1}{1+n(\gamma-1)}}\in\mathcal{S}$$

Since

$$\left(\left(1 + n(\gamma - 1) \right) \int_0^z t^{n(\gamma - 1)} h'(t) dt \right)^{\frac{1}{1 + n(\gamma - 1)}} = \\
\left(\left(1 + n(\gamma - 1) \right) \int_0^z \left(H_s^q(\alpha_1, \beta_1) f_1(t) \right)^{\gamma - 1} \dots \left(H_s^q(\alpha_1, \beta_1) f_n(t) \right)^{\gamma - 1} dt \right)^{\frac{1}{1 + n(\gamma - 1)}} \\
= F_{\gamma}(\alpha_1, \beta_1; z),$$

hence $F_{\gamma}(\alpha_1, \beta_1; z) \in \mathcal{S}$.

Putting $q=2, s=1, \alpha_1=\beta_1$ and $\alpha_2=1$, in Theorem 1, we have

Corollary 1. [2] Let $f_i \in \mathcal{A}, \ \gamma \in \mathbb{C}$. If

$$\left| \frac{z^2 f_i'(z)}{(f_i(z))^2} - 1 \right| \le 1, \quad |\gamma - 1| \le \frac{Re \gamma}{3n}, \quad and |f_i(z)| \le 1$$

for all $z \in \mathcal{U}$ then the operator

$$F_{\gamma}(z) = \left[(n(\gamma - 1) + 1) \int_{0}^{z} (f_{1}(t))^{\gamma - 1} \dots (f_{n}(t))^{\gamma - 1} dt \right]^{\frac{1}{(n(\gamma - 1) + 1)}}$$

is univalent.

Theorem 2. Let $f \in A$ satisfy

$$\left| \frac{z^2 (H_s^q(\alpha_1, \beta_1) f(z))'}{(H_s^q(\alpha_1, \beta_1) f(z))^2} - 1 \right| < 1, \quad \forall z \in \mathcal{U}$$

and $\gamma \in \mathbb{C}$ with $|\gamma - 1| \leq \frac{Re\gamma}{3k}$. If $|H_s^q(\alpha_1, \beta_1)f(z)| \leq 1$, $\forall z \in \mathcal{U}$, then the function

$$F_{\gamma}^{k}(\alpha_{1}, \beta_{1}; z) = \left(\left(k(\gamma - 1) + 1 \right) \int_{0}^{z} (H_{s}^{q}(\alpha_{1}, \beta_{1}) f(t))^{k(\gamma - 1)} dt \right)^{\frac{1}{k(\gamma - 1) + 1}} \tag{10}$$

is univalent.

Proof. From (10) we have

$$F_{\gamma}^{k}(\alpha_{1},\beta_{1};z) = \left(\left(k(\gamma-1) + 1 \right) \int_{0}^{z} t^{k(\gamma-1)} \left(\frac{H_{s}^{q}(\alpha_{1},\beta_{1})f(t)}{t} \right)^{k(\gamma-1)} dt \right)^{\frac{1}{k(\gamma-1)+1}}$$

and let

$$h(z) = \int_0^z \left(\frac{H_s^q(\alpha_1, \beta_1) f(t)}{t} \right)^{k(\gamma - 1)} dt.$$

From here using arguments similar to those detailed in Theorem 1, we can prove the assertion of the Theorem 2.

We note that on restating the Theorem 2 for the choice of q=2, s=1, $\alpha_1=\beta_1$ and $\alpha_2=1$, we have the result proved by D.Breaz and N.Breaz [2].

References

[1] R. Aghalary et al., Subordinations for analytic functions defined by the Dziok-Srivastava linear operator, Appl. Math. Comput., 187, (2007), no. 1, 13–19.

- [2] D. Breaz and N. Breaz, An integral univalent operator, Acta Math. Univ. Comenian. (N.S.), 7, (2007), no. 2, 137–142.
- [3] S. Ozaki and M. Nunokawa, *The Schwarzian derivative and univalent functions*, Proc. Amer. Math. Soc., 33, (1972), 392–394.
- [4] N. N. Pascu, On a univalence criterion. II, in Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), 153–154, Univ. "Babes-Bolyai", Cluj.
- [5] N. N. Pascu, An improvement of Becker's univalence criterion, in Proceedings of the Commemorative Session: Simion Stoïlow (Braşov, 1987), 43–48, Univ. Braşov, Braşov.

Authors:

C.Selvaraj
Department of Mathematics,
Presidency College,
Chennai-600 005,
Tamilnadu, India
email: pamc9439@yahoo.co.in

K.R.Karthikeyan R.M.K.Engineering College R.S.M.Nagar, Kavaraipettai-601206, Thiruvallur District, Gummidipoondi Taluk, Tamilnadu,India email: kr_{-} karthikeyan1979@yahoo.com.