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Abstract. Making use of certain linear operator, we define a new subclass
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1. Introduction

Let Σ denote the class of meromorphic functions f normalized by

f(z) =
1

z
+

∞∑
n=1

anz
n, (1)

which are analytic and univalent in the punctured unit disk U = {z : 0 < |z| < 1}.
For 0 ≤ β, we denote by S∗(β) and k(β), the subclasses of Σ consisting of all
meromorphic functions which are, respectively, starlike of order β and convex
of order β in U (cf. e.g., [1, 2, 4, 12]).

For functions fj(z)(j = 1; 2) defined by

fj (z) =
1

z
+

∞∑
n=1

an,jz
n, (2)

we denote the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2) =
1

z
+

∞∑
n=1

an,1an,2z
n. (3)
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Let us define the function φ̃(a, c; z) by

φ̃ (a, c; z) =
1

z
+

∞∑
n=0

∣∣∣∣∣(a)n+1

(c)n+1

∣∣∣∣∣ anz
n, (4)

for c 6= 0,−1,−2, ..., and a ∈ C/ {0}, where (λ)n = λ(λ+1)n+1 is the Pochham-
mer symbol. We note that

φ̃ (a, c; z) =
1

z
2F1 (1, a, c; z)

where

2F1 (b, a, c; z) =
∞∑

n=0

(b)n (a)n

(c)n

zn

n!

is the well-known Gaussian hypergeometric function. Corresponding to the
function φ̃(a, c; z), using the Hadamard product for f ∈ Σ, we define a new
linear operator L∗(a, c) on Σ by

L∗ (a, c) f (z) = φ̃ (a, c; z) ∗ f (z) =
1

z
+

∞∑
n=1

∣∣∣∣∣(a)n+1

(c)n+1

∣∣∣∣∣ anz
n. (5)

The meromorphic functions with the generalised hypergeometric functions
were considered recently by Dziok and Srivastava [5], [6], Liu [8], Liu and
Srivastava [9], [10], [11], Cho and Kim [3].

For a function f ∈ L∗ (a, c) f (z) we define

I0 (L∗ (a, c) f (z)) = L∗ (a, c) f (z) ,

and for k = 1, 2, 3, ...,

Ik (L∗ (a, c) f (z)) = z
(
Ik−1L∗ (a, c) f (z)

)′
+

2

z

=
1

z
+

∞∑
n=1

nk

∣∣∣∣∣(a)n+1

(c)n+1

∣∣∣∣∣anz
n. (6)
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We note that Ik (L∗ (a, a) f (z)) studied by Frasin and Darus [7].

Also, it follows from (6) that

z (L(a, c)f(z))′ = aL(a + 1, c)f(z)− (a + 1) L(a, c)f(z).

Now, for α(−1 ≤ α < 1) and β(β ≥ 1), we let Σ∗(α, β, k) be the subclass of A
consisting of the form (1) and satisfying the analytic criterion

<
{

Ik+1L∗ (a, c) f (z)

IkL∗ (a, c) f (z)
− α

}
> β

∣∣∣∣∣Ik+1L∗ (a, c) f (z)

IkL∗ (a, c) f (z)
− 1

∣∣∣∣∣ , z ∈ U (7)

where L∗ (a, c) f (z) is given by (5).

The main objective of this paper is to obtain necessary and sufficient conditions
for the functions f ∈ Σ∗(α, β, k). Furthermore, we obtain extreme points,
growth and distortion bounds and closure properties for the class Σ∗(α, β, k).

2.Basic properties

In this section we obtain necessary and sufficient conditions for functions f in
the class Σ∗(α, β, k).

Theorem 1. A function f of the form (1) is in Σ∗(α, β, k) if

∞∑
n=1

nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣ |an| ≤ 1− α (8)

−1 ≤ α < 1 and β ≥ 1.

Proof. It suffices to show that

β

∣∣∣∣∣Ik+1L∗ (a, c) f (z)

IkL∗ (a, c) f (z)
− 1

∣∣∣∣∣−<
{

Ik+1L∗ (a, c) f (z)

IkL∗ (a, c) f (z)
− 1

}
≤ 1− α.
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We have

β

∣∣∣∣∣Ik+1L∗ (a, c) f (z)

IkL∗ (a, c) f (z)
− 1

∣∣∣∣∣−<
{

Ik+1L∗ (a, c) f (z)

IkL∗ (a, c) f (z)
− 1

}

≤ (1 + β)

∣∣∣∣∣Ik+1L∗ (a, c) f (z)

IkL∗ (a, c) f (z)
− 1

∣∣∣∣∣ ≤
(1 + β)

∞∑
n=1

nk (n− 1)
|(a)n+1|
|(c)n+1| |an| |z|n

1
|z| −

∞∑
n=1

nk |(a)n+1|
|(c)n+1|an |z|n

Letting z → 1 along the real axis, we obtain

≤
(1 + β)

∞∑
n=1

nk (n− 1)
|(a)n+1|
|(c)n+1| |an|

1−
∞∑

n=1
nk |(a)n+1|
|(c)n+1| |an|

This last expression is bounded above by (1− α) if

∞∑
n=1

nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣ |an| ≤ 1− α

Hence the theorem.

Our assertion in Theorem 1 is sharp for functions of the form

fn (z) =
1

z
+

∞∑
n=1

(1− α)
∣∣∣(c)n+1

∣∣∣
nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣zn, (9)

(n ≥ 1; k ∈ N0).

Corollary 1. Let the functions f be defined by (5) and let f ∈ A, then

an ≤
(1− α) (c)n+1

nk [n (1 + β)− (β + α)] (a)n+1

, (10)

(n ≥ 1; k ∈ N0,).
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Theorem 2. Let f define by (1) and g(z) = 1
z

+
∞∑

n=1
bnz

n be in the class

Σ∗(α, β, k). Then the function h defined by

h (z) = (1− λ) f(z) + λg(z) =
1

z
+

∞∑
n=1

qnz
n, (11)

where qn = (1− λ) an + λbn, 0 ≤ λ < 1 is also in the class Σ∗(α, β, k).

3.Growth and Distortion Theorem

Theorem 3. Let the function f defined by (6) be in the class Σ∗(α, β, k).
Then

1

r
− r ≤ |f (z)| ≤ 1

r
+ r (12)

Equality holds for the function

f(z) =
1

z
+ z.

Proof. Since f ∈ S∗(α, β, k), by Theorem 1,

∞∑
n=1

nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣ |an| ≤ 1− α

Now

(1− α)
∞∑

n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an =
∞∑

n=1

(1− α)

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an ≤

∞∑
n=1

nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣ |an| ≤ 1− α

and therefore

∞∑
n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an ≤ 1.
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Since f (z) = 1
z

+
∞∑

n=1

|(a)n+1|
|(c)n+1|anz

n,

|f(z)| =
∣∣∣∣∣1z +

∞∑
n=1

(a)n+1

(c)n+1

anz
n

∣∣∣∣∣ ≤ 1

|z|
+

∞∑
n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an |z|n

≤ 1

r
+ r

∞∑
n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an ≤
1

r
+ r

and

|f(z)| =
∣∣∣∣∣1z −

∞∑
n=1

(a)n+1

(c)n+1

anz
n

∣∣∣∣∣ ≥ 1

|z|
−

∞∑
n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an |z|n

≥ 1

r
− r

∞∑
n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an ≥
1

r
− r

which yields the theorem.

Theorem 4. Let the function f defined by (6) be in the class Σ∗(α, β, k).
Then

1

r2
− 1 ≤ |f ′ (z)| ≤ 1

r2
+ 1, (13)

Equality holds for the function f(z) = 1
z

+ z.

Proof. we have

|f ′(z)| =
∣∣∣∣∣−1

z2
+

∞∑
n=1

n
(a)n+1

(c)n+1

anz
n−1

∣∣∣∣∣ ≤ 1

|z|2
−

∞∑
n=1

n

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an |z|n−1

≤ 1

r2
−

∞∑
n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣nan (14)
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Since f(z) ∈ Σ∗(α, β, k), we have

(1− α)
∞∑

n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣nan ≤
∞∑

n=1

nk−1 [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣nan ≤ 1− α

Hence,

∞∑
n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣nan ≤ 1. (15)

Substituting (14) in (15), we get

|f ′(z)| ≤ 1

r2
+ 1

|f ′(z)| ≥ 1

r2
− 1

This completes the proof.

4.Radii Of Starlikeness and Convexity

The radii of Starlikeness and convexity for the class for the class Σ∗(α, β, k) is
given by the following theorems.

Theorem 5. If the function f be defined by (6) is in the class Σ∗(α, β, k) then
f is meromorphically starlike of order δ(0 ≤ δ < 1) in |z−p| < |z| < r1, where

r1 = r1 (α, β, k) = inf
n≥1

{
nk (1− δ) [n (1 + β)− (β + α)]

(n + 2− δ) (1− α)

} 1
n+1

. (16)

The result is sharp for the function f given by (9).

Proof. It suffices to prove that∣∣∣∣∣∣∣
z

(
Ikf (z)

)′
Ikf (z)

+ 1

∣∣∣∣∣∣∣ < 1− δ (17)
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for |z| < r1. The left hand side we have

∣∣∣∣∣∣∣
z

(
Ikf (z)

)′
Ikf (z)

+ 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∞∑

n=1
nk (n + 1)

|(a)n+1|
|(c)n+1|anz

n

1
z

+
∞∑

n=1
nk |(a)n+1|
|(c)n+1|anzn

∣∣∣∣∣∣∣∣∣ ≤
∞∑

n=1
nk (n + 1)

|(a)n+1|
|(c)n+1|an |z|n

1
|z| −

∞∑
n=1

nk |(a)n+1|
|(c)n+1|an |z|n

(18)

The last expression is less than 1− δ if

∞∑
n=1

nk (n + 1)

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an |z|n ≤ (1− δ)

 1

|z|
−

∞∑
n=1

nk

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an |z|n
 (19)

or

∞∑
n=1

nk (n + 2− δ)

(1− δ)

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣ |z|n+1 ≤ 1 (20)

with the aid of (8) and (20) is true if

∞∑
n=1

nk (n + 2− δ)

(1− δ)
|z|n+1 ≤ nk [n (1 + β)− (β + α)]

(1− α)
(21)

n ≥ 1.
Solving (21) for |z|, we obtain

|z| <
{

nk (1− δ) [n (1 + β)− (β + α)]

(n + 2− δ) (1− α)

(a)n+1

(c)n+1

} 1
n+1

.

This completes the proof of Theorem 5.

Theorem 6. If the function f be defined by (6) is in the class Σ∗(α, β, k) then
f(z) is meromorphically convex of order δ(0 ≤ δ < 1) in |z| < r2, where

r2 = r2 (α, β, k) =

inf
n≥1

{
nk−1 (1− δ) [n (1 + β)− (β + α)]

(n + 2− δ) (1− α)

} 1
n+1

. (22)

56



F. Ghanim, M.Darus - Linear operators associated with a subclass ...

The result is sharp for the function f given by (9).

Proof. By using the technique employed in the proof of Theorem , we can
show that ∣∣∣∣∣zf ′′(z)

f ′(z)
+ 2

∣∣∣∣∣ ≤ (1− δ) (23)

for |z| < r2, with the aid of Theorem 1. Thus we have the assertion of Theorem
6.

5.Convex Linear Combinations

Our next result involves linear combinations of several functions of the type (9).

Theorem 7. Let

f0 (z) =
1

z
(24)

and

fn (z) =
1

z
+

(1− α)
∣∣∣(c)n+1

∣∣∣
nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣zn, (25)

n ≥ 1,−1 < α ≤ 1, β ≥ 0 and k ≥ 0.
Then f(z) ∈ S∗(α, β, k) if and only if it can be expressed in the form

f(z) =
∞∑

n=0

λnfn(z) (26)

where λn ≥ 0 and
∞∑

n=0
λn = 1.

Proof. From (24), (25) and (26), it is easily seen that

f(z) =
∞∑

n=0

λnfn(z) =
λ0

z
+

∞∑
n=1

λn (1− α)
∣∣∣(c)n+1

∣∣∣
nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣zn, (27)
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Since

∞∑
n=1

nk [n (1 + β)− (β + α)]
∣∣∣(a)n+1

∣∣∣
(1− α)

∣∣∣(c)n+1

∣∣∣ .
λn (1− α)

∣∣∣(c)n+1

∣∣∣
nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣
=

∞∑
n=1

λn = 1− λ0 ≤ 1.

It follows from Theorem 1 that f ∈ S∗(α, β, k).

Conversely, let us suppose that f ∈ S∗(α, β, k). Since

an ≤
(1− α)

∣∣∣(c)n+1

∣∣∣
nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣ ,
n ≥ 1,−1 < α ≤ 1, β ≥ 0 and k ≥ 0.

Setting λn =
nk[n(1+β)−(β+α)]|(a)n+1|

(1−α)|(c)n+1| , n ≥ 1, k ≥ 0 and λ0 = 1−
∞∑

n=1
λn.

It follows that f(z) =
∞∑

n=0
λnfn(z). This completes the proof of the theorem.

Finally, we prove the following:

Theorem 8. The class S∗(α, β, k) is closed under convex linear combinations.

Proof. Suppose that the function f1(z) and f2(z) defined by

fj (z) =
1

z
−

∞∑
n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an,jz
n, (j = 1, 2; z ∈ U) . (28)

are in the class S∗(α, β, k). Setting

f (z) = µf1 (z) + (1− µ) f2 (z) , (0 ≤ µ < 1) (29)

we find from (28) that

f (z) =
1

z
+

∞∑
n=1

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣ {µan,1 + (1− µ) an,2} zn, (30)
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(0 ≤ µ < 1, z ∈ U).
In view of Theorem 1, we have

∞∑
n=0

nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣ {µan,1 + (1− µ) an,2}

= µ
∞∑

n=1

nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an,1

+ (1− µ)
∞∑

n=1

nk [n (1 + β)− (β + α)]

∣∣∣(a)n+1

∣∣∣∣∣∣(c)n+1

∣∣∣an,2

≤ µ (1− α) + (1− µ) (1− α) = (1− α) .

which shows that f(z) ∈ S∗(α, β, k). Hence the theorem.
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