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MAPPINGS ON S-PARACOMPACT SPACES
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Abstract. In this paper, we prove that open, perfect mappings both preserve
and inversely preserve S-paracompact spaces. As some applications these results,
some sum-theorems and product-theorems for S-paracompact spaces are obtained.
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1. Introduction

In [2], K. Y. Al-Zoubi introduced S-paracompact spaces, and obtained many
interesting properties of S-paracompact spaces. Recently X. Ge also gave some
investigations for S-paracompact spaces [6]. The purpose of this paper is to investi-
gate open perfect mappings on S-paracompact spaces. We prove that open perfect
mappings both preserve and inversely preserve S-paracompact spaces. As some ap-
plications of these results, we obtain some sum-theorems and product-theorems for
S-paracompact spaces, which generalize related results in [2].

Throughout this paper, all mappings are continuous and onto. N denotes the
set of all natural numbers, ω denotes the first infinite cardinal, X and Y denote
topological spaces. For a subset P of a space X, P denotes the closure of P in X.
Let U and V be two covers of semi-open subsets of a space X. We say that V is a
semi-open refinement of U , if for each V ∈ V there exists U ∈ U such that V ⊂ U .
Let U be a collection of subsets of a space X and F ⊂ X.

⋃
U and U

∧
F denote

the union
⋃
{U : U ∈ U} and the collection {U

⋂
A : U ∈ U}, respectively. Let

f : X −→ Y be a mapping, and let U and V are two collections of subsets of X and
Y , respectively, then f(U) = {f(U) : U ∈ U} and f−1(V) = {f−1(V ) : V ∈ V}. The
term “clopen” means “both open and closed”. One may refer to [5] for undefined
notations and terminology.
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2. Invariance of Images of S-paracompact Spaces

Definition 2.1. Let X be a space.
(1) A collection F = {Fα : α ∈ I} of subsets of a space X is called to be locally

finite [4], if for each x ∈ X, there exists an open neighborhood Ux of x such that Ux

intersects at most finitely many members of F .
(2) A subset B of X is called a semi-open subset of X [7] if there exists an open

set U of X such that U ⊂ B ⊂ U .
(3) A space X is called S-paracompact [2] if each open cover of X has a locally

finite semi-open refinement.

Definition 2.2[5]. Let f : X −→ Y be a mapping.
(1) f is called a compact mapping if f−1(y) is a compact subset of X for each

y ∈ Y .
(2) f is called an open (resp. closed) mapping if f(U) is an open (resp. closed)

subset of Y for each open (resp. closed) subset U of X.
(3) f is called a perfect mapping if f is a closed and compact mapping.
(4) f is called an open perfect mapping if f is an open and perfect mapping.

The following lemma comes from [5, Theorem 1.4.13]

Lemma 2.3. A mapping f : X −→ Y is closed if and only if for each y ∈ Y and
each open subset U in X which contains f−1(y), there exists an open neighborhood
V of y in Y such that f−1(V ) ⊂ U .

Theorem 2.4. Let f : X −→ Y be an open perfect mapping. If X is S-
paracompact, then Y is S-paracompact.

Proof. Assume X is an S-paracompact space. Let U be an open cover of Y . Then
f−1(U) is an open cover of X, and so f−1(U) has a locally finite semi-open refinement
V. It is easy to see that f(V) is a semi-open refinement of U because f is clopen. It
suffices to prove that f(V) is locally-finite in Y .

Let y ∈ Y . For each x ∈ f−1(y), since V is locally-finite, there exists an open
neighborhood Gx of x such that Gx intersects at most finitely many members of
V. Note that f is a compact mapping, there exists a finite subcollection Wy of
{Gx : x ∈ f−1(y)} such that f−1(y) ⊂

⋃
Wy. It is clear that

⋃
Wy intersects at

most finitely many members of V. By Lemma 2.3, there exists an open neighborhood
Oy of y in Y such that f−1(Oy) ⊂

⋃
Wy, then f−1(Oy) intersects at most finitely

many members of V. Therefore Oy intersects at most finitely many members of
f(V). This proves that f(V) is locally-finite in Y .
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As an application of Theorem 2.4, we give the following two sum theorems for
S-paracompactness, which generalize [2, Theorem 4.1].

Theorem 2.5. Let {Xα : α ∈ I} be a locally finite clopen cover of a space X.
Then X is S-paracompact if and only if Xα is S-paracompact for each α ∈ I.

Proof. Necessity: It follows from [2, Corollary 3.5].
sufficiency: The proof is based on a construction which is essentially due to

K.Morita [8]. For each α ∈ I, let Yα denote a copy of Xα and let fα be this
homeomorphism. Let Y be the disjoint topological sum of {Yα : α ∈ I}. By [2,
Theorem 4.1], Y is S-paracompact. Let f : Y −→ X be the mapping defined as
follows:

For each x ∈ Y , f(x) = fα(x) if x ∈ Yα.
By Theorem 2.4, we only need to prove that f is open perfect.
(1) f is compact: Let x ∈ X. Since {Xα : α ∈ I} is locally finite, x belongs to

at most finitely many members of {Xα : α ∈ I}. It follows that f−1(x) is finite. So
f is compact.

(2) f is open: Let U be an open subset of Y . Then U =
⋃
{Uα : α ∈ I ′}, where Uα

is an open subset Yα for each α ∈ I ′, and I ′ ⊂ I. Further, f(U) =
⋃
{f(Uα) : α ∈ I ′}.

For each α ∈ I ′, Since f(Uα) = fα(Uα), f(Uα) is an open subset of Xα. Note that
Xα is an open subset of X, f(Uα) is also an open subset of X. It follows that f(U)
is an open subset of X. So f is open.

(3) f is closed: Let F be a closed subset of Y . Then F =
⋃
{Fα : α ∈ I ′}, where

Fα is a closed subset Fα for each α ∈ I ′, and I ′ ⊂ I. Further, f(F ) =
⋃
{f(Fα) :

α ∈ I ′}. For each α ∈ I ′, Since f(Fα) = fα(Fα), f(Fα) is a closed subset of Xα.
Note that Xα is an closed subset of X, f(Fα) is also a closed subset of X. Since
{Xα : α ∈ I} is locally finite and each f(Fα) ⊂ Xα, {f(Fα) : α ∈ I ′} is locally
finite. By [4, Proposition 1.1(iv)], f(F ) =

⋃
{f(Fα) : α ∈ I ′} =

⋃
{f(Fα) : α ∈ I ′}.

It follows that f(F ) is a closed subset of X. So f is closed.
By the above (1), (2) and (3), f is open perfect.

For a set B, we denote the cardinal of B by |B|. Recall a mapping f : X −→ Y
is a k-to-1 mapping [3], if |f−1(x)| = k < ω for each x ∈ X.

Theorem 2.6. Let {Xα : α ∈ I} be an open cover of a space X, and let
|{α ∈ I : x ∈ Xα}| = k < ω for each x ∈ X. Then X is S-paracompact if and only
if Xα is S-paracompact for each α ∈ I.

Proof. Necessity: Assume X is S-paracompact. Let α ∈ I. By [2, Corollary 3.5],
it suffices to prove that Xα is a closed subset of X. Let x 6∈ Xα. Put {β ∈ I :
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x ∈ Xβ} = I ′, and put U =
⋂
{Xβ : β ∈ I ′}. Then U is an open neighborhood

of x. We claim that U
⋂

Xα = ∅. In fact, if there exists x′ ∈ U
⋂

Xα, then
|{β ∈ I : x′ ∈ Xβ}| > k. This is a contradiction.

sufficiency: Assume Xα is S-paracompact for each α ∈ I. By a similar way as
in the proof of the sufficiency of Theorem 2.4, we construct an open and compact
mapping f : Y −→ X, where Y is S-paracompact. It is not difficult to discover
that f is a k-to-1 mapping. By [3, Lemma 1 and Lemma 2], each open and k-to-
1 mapping is a closed mapping. Thus f is open perfect. By Theorem 2.4, X is
S-paracompact.

3. Invariance of Inverse Images of S-paracompact Spaces

Lemma 3.1. Let f : X −→ Y be an open mapping. If U is a semi-open subset
of Y and V is an open subset of X, then f−1(U)

⋂
V is a semi-open subset of X.

Proof. Let U be a semi-open subset of Y and V be an open subset of X. Since U is
a semi-open subset of Y , there exists an open subset G of Y such that G ⊂ U ⊂ G,
and so f−1(G) ⊂ f−1(U) ⊂ f−1(G). By [5, 1.4.C], f−1(G) = f−1(G) because f
is an open mapping. Thus f−1(G) ⊂ f−1(U) ⊂ f−1(G). Note that f−1(G) is an
open subset of X, so f−1(U) is a semi-open subset of X. By [2, Lemma 1.5(a)],
f−1(U)

⋂
V is a semi-open subset of X.

Theorem 3.2. Let f : X −→ Y be an open perfect mapping. If Y is S-
paracompact, then X is S-paracompact.

Proof. Assume Y is an S-paracompact space. Let U be an open cover of X. For
each y ∈ Y , there exists a finite subcollection Uy of U such that f−1(y) ⊂

⋃
Uy

because f is a compact mapping. By Lemma 2.3, there exists an open neighborhood
Vy of y in Y such that f−1(Vy) ⊂

⋃
Uy Put V = {Vy : y ∈ Y }, then V is an open

cover of Y . Since Y is S-paracompact, V has a locally finite semi-open refinement
W. Without loss of generality, we may assume W = {Wy : y ∈ Y }, where Wy ⊂ Vy

for each y ∈ Y . Put Fy = Uy
∧

f−1(Wy) for each y ∈ Y . By Lemma 3.1, each
member of Fy is a semi-open subset of X. Put F =

⋃
{Fy : y ∈ Y }, then F is a

semi-open refinement of U . It suffices to prove that F is locally finite.
Let x ∈ X. Because W is locally finite in Y and f inversely preserves locally

finite collections, f−1(W) is locally finite in X. So there exists a neighborhood Ux

of x in X and a finite subset Y0 of Y such that for each y ∈ Y − Y0, Ux misses
f−1(Wy). Further, Ux misses each member of Fy for each y ∈ Y − Y0. Thus
{F ∈ F : Ux

⋂
F 6= ∅} ⊂

⋃
{Fy : y ∈ Y0}. Note that Fy is finite for each y ∈ Y0.

{F ∈ F : Ux
⋂

F 6= ∅} is finite. This proves that F is locally finite.
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As an application of Theorem 3.2, we give a proof of [2, Theorem 4.2] by map-
pings.

Theorem 3.3. Let X be a compact space and let Y be an S-paracompact space.
Then X × Y is S-paracompact.

Proof. Let f : X × Y −→ Y be the projection. By Theorem 3.2, We only need to
prove that the projection f : X × Y −→ Y is open perfect.

It is well known that each projection is an open mapping. For each y ∈ Y , it is
easy to see that f−1(y) = X × {y}, which is homeomorphous to X, so f−1(y) is a
compact subset of X × Y . Thus, f is a compact mapping. It suffices to prove that
f is a closed mapping.

Let F is a closed subset X×Y and let y 6∈ f(F ). Then for each x ∈ X, (x, y) 6∈ F ,
and so there exist an open neighborhood Ux of x in X and an open neighborhood
Vx of y in Y such that (Ux × Vx)

⋂
F = ∅. Put U = {Ux : x ∈ X}, then U ,

which is an open cover of the compact space X, has a finite subcover U ′ of X. Let
U ′ = {Ux : x ∈ X ′}, where X ′ is a finite subset of X. Put Vy =

⋂
{Vx : x ∈ X ′},

then Vy is an open neighborhood of y in Y . It is easy to see that (X × Vy)
⋂

F = ∅,
and so Vy

⋂
f(F ) = ∅, thus f(F ) is a closed subset of Y . This proves that f is a

closed mapping.
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